The DSP Music Syndicate Development Kit

for the ADSP-2181 EZ-Kit Lite

and Chiclet

4Introduction

4SynDevKit Requirements

5SynDevKit Features Under Development:

6Revision History:

6Revision History:

7Revision History:

9SynDevKit Copyright

9SynDevKit Software

9Music Generated With SynDevKit

10A SynDevKit Tutorial

10SynDevKit Register/Mode Requirements

11Part A: creating a new song project

14Part B: overview of how to make a loop

20Part C: creating multiple tracks, using FX, memory modifiers and SongCTRL

20bass drum:

22hihat/pitched percussive noise:

23lead/FM synthesizers:

24additional noises:

25TrigTracks, VolTracks, CTRLTracks, TrigInit, and the sequencer:

31Part D: using SETTRACK and trackparse1.pl

36Part E: preset handling in SynDevKit

36PartF: placing multiple songs in a single .ex e

37Part G: advanced synthesis and sequencing techniques

38SynDevKit Generators, Effects, and Envelopes

38random numbers and SynDevKit

39making multiple calls to the same function

39datatypes and expected ranges

40ADSRPanEnv

41AlgoSineGen

41AlgoSineSatGen

43BitmaskFX

44ClampFX

45CopiedGen

46DelaySynGen

47Exp1Gen

48ExpDecayEnv

49ExpImpulseGen

51FM2Op0Gen

53GenSHFX

53HPWTGen2

55KillTimeFX

56KSGen

58LFO3

60MemEnv1

60MemEnv2

60MemEnv3

61ME2_CURRSCALE

64MultiGen

65OscCombGen

67PerNoiseGen

68PrevCurrFiltFX

69ProbKSGen

71ProbSynGen

73ReadLeftInput

73RectifyFX

74RotSynthGen

76Seq2

80SVFFX

81TunedRotSynthGen

82WaveShapeFX

84WTGen

84WTGen2

86WTGenSyncFX

87ZeroSampsFX

88SynDevKit Mixers

88LBasicMix

88RBasicMix

89Miscellaneous SynDevKit Macros

89MUTETRACK(n)

89UNMUTETRACK(n)

90SETTRACKVOL_L(n, vol)

90SETTRACKVOL_R(n, vol)

90SETTRACKVOL_LR(n, vol)

90BASEPLUSRAND_AR(base, rand)

91SynDevKit PC Software

91trackparse1.pl

93cloneproj.pl

94formatconv.exe

94timeconv.exe

95Adding New Signal Generators, FX, Envelopes to SynDevKit

96SynDevKit Generators:

96SynDevKit FX:

96SynDevKit Envelopes:

97SynDevKit Control-Rate Processes:

98FAQs

100Miscellaneous Notes on SynDevKit Operation

100control tracks:

100GenFXIni call flow:

102Credits

Introduction

the Syndicate Development Kit (SynDevKit) is a full-featured development

environment for creating algorithmic and generative musical pieces on a

Digital Signal Processor (DSP). this release is for the ADSP-2181 EZ-Kit and

for Chiclet (aka the DSP music box), a portable and powerful DSP board

designed by the DSP Music Syndicate (currently not available for sale).

the main features of SynDevKit include:

 * over a dozen generators, includes basic waveforms in virtual analog (VA)

 synthesis, tweaked karplus strong (KS) generators, and many unique

 synthesizers

 * multiple FX modules, including state-variable filters (SVF), bitmasking,

 waveshapers, and other novel functions to sculpt and crunch sound

 * multiple envelopes types and stereo pan available on all audio outputs

 * a flexible step sequencer, with support for unlimited number of tracks

 (limited only by available memory and MIPS), control tracks to automate
 feeding new parameters into generators/FX, individually configurable

 sequence lengths, swing, and probabilistic sequencing

 * methods of automatically modifying SynDevKit parameters with

 LFOs (with sample/hold and configurable waveforms) and envelopes

 * Perl scripts for simplifying composition and managing projects

 * codified methodology of sequencing and controlling events at the
 “measure” level of abstraciton

 * methods of creating single DSP executables that contain multiple songs

 * documentation and examples on how to include custon generators, FX, and

 control modules to the existing infrastructure

SynDevKit Requirements

SynDevKit requires the following hardware and software:

 * an ADSP-2181 EZ-KIT Lite (1)

 * a Perl interpretter (2)

(1) SynDevKit has been tested with both the legacy development tools (versions

 5.11-6.1) and the newer, visualDSP++ tools (revision 3.5). SynDevKit provides

 a unified environment for developing music for either version of the

 tools using a Perl command-line parser and makefiles for calling the
 appropriate development tools. it is assumed that the EzKit has already

 been installed and that the basics of developing for this platform are

 already understood. for more information on the EzKit, visit

 www.analog.com. also note that SynDevKit includes files necessary for
 compatibility with chiclet, which is an ADSP-218x-based system with
 an AD1885 codec. this board is currently not available to the public.

 compatibility with other boards with a similar configuration (such as

 those designed by Danville Signal Processing (www.danvillesignal.com)

 and SanJaaC Electronics (www.sanjaac.com) is unknown at this time.
(2) the recommended Perl interpretter is availabe from ActiveState

 (www.activestate.com). it has been tested with versions 5.6.1 and

 5.8.0.

Revision History:

8x-SynDevKit 1.40

23dec2003

new features from 1.30

 * added audio in processing to ADSP-2181 EZ-Kit

 * new command line parser - all SynDevKit operations handled through a

 unified interface

Revision History:

8x-SynDevKit 1.30

23dec2003

new features from 1.25

 * added audio in processing to chiclet

Revision History:

8x-SynDevKit 1.25

18dec2003

new features from 1.20

 * basic implementation of preset handling in SynDevKit projects

 * added CopiedGen generator, which passes the output of a generator

 (pre-envelope, post-FX) as the input of another track.

known bugs in 1.25

 * preset handling is in its infancy.

8x-SynDevKit 1.20

24nov2003

new features from 1.10

 * added preprocessing stage to build to handle symbolic notation for

 TrigTrack/VolTrack initializations (trackparse1.pl)

 * script for generating new projects based on old projects (cloneproj.pl)

 * new memory envelope (MemEnv2) for multi-stage exponential decay

 * additions and corrections to this document

 * (hopefully) fixed the initialization bug for chiclet. at the very least it

 is behaving much better than before.

known bugs in 1.20

 * preprocessing is very touchy. be sure to follow syntax exactly as given

 in this documentation, and report all problems to syndevkit@dspmusic.org.

Revision History:

8x-SynDevKit 1.10

05nov2003

new features from 1.03

 * this document

known bugs in 1.10

 * MUTETRACK still not functional when executed multiple times before an

 UNMUTETRACK

Revision History:

8x-SynDevKit 1.03

23oct2003

new features from 1.02

 * tunable rotation synthesizer (TunedRotSynthGen)

 * modular mixing environment (moved mixer to GenFX from system code)

 * lots of tutorial information

known bugs in 1.03

 * fixed MUTETRACK bug

8x-SynDevKit 1.02

15oct2003

new features from 1.01

 * exponential impulse generator (ExpImpulseGen)

 * high precision (16.16 frequency input datatype) wavetable generator

 (HPWTGen2)

 * codified method of passing multiple generators through a single

 envelope (MultiGen)

 * 2 slope waveshaper (compressor/expander/distortion) (WaveShapeFX)

 * oscillator sync for WTGen/WTGen2 (WTGenSyncFX)

 * additional (untested) OscCombGen types. abs(a)*b, pick bigger of a or b,

 picker smaller of a or b.

 * PC program (formatconv.exe) to convert fractional values to unsigned hex

 and vice versa.

bugfixes on 1.01:

 * build environment cleaned up and simplified. .bat files provided for

 2181 ezkit and chiclet targets. removed incremental build features as

 depedencies were not being handled and makefile cannot handle multiple

 projects which have the same filename.

known bugs in 1.02

 * somehow the amb1 project stopped working. to be investigated.

8x-SynDevKit 1.01

05oct2003

new features from 1.00

 * audio rate sample/hold (GenSHFX)

 * RotSynthGen has configurable rotation amount

 * added basic 2181 ezkit support to SynDevKit, split files into chiclet-

 specific source, 2181 ezkit-specific source, and common source.

bugfixes on 1.00:

 * automatic hanging of envelopes at ^Env now properly supports ME3ENV type.

 * fixed negative frequency handling in FM2Op0Gen

 * cleanup of file locations for chiclet-specific and common files

 * fixed bugs inhibiting placing multiple songs in single executable

 * hardly a bugfix, but the full name of this release is now 8x-SynDevkit,

 not chiclet-SynDevKit. a little more inclusive.

known bugs in 1.01

 * problems with build environment, especially when working with multiple

 music projects with files of the same name in each project. they are

 not properly handled with current dependencies. either all project-

 specific files must have different names from files in other projects, or

 the forcebld batch command should be used

 * seems to be some problems with building files with 2181 and chiclet.

 investigation is ongoing. likely that directory structure will change.

SynDevKit Copyright

SynDevKit Software

SynDevKit and all of its contents are copyrighted to Ethan Bordeaux (c) 2001-2004. Individual functions within SynDevKit may be used in non-commercial (ie free) applications. People wishing to use SynDevKit/portions thereof in commercial applications or the core architecture of SynDevKit in non-commercial applications should contact me at syndevkit@dspmusic.org.

ADSP-2181 EZ-Kit Lite and VisualDSP++ are copyright Analog Devices.

Music Generated With SynDevKit

All music generated my SynDevKit is copyrighted to the creator of the music, though I would love to hear what you’ve made.

A SynDevKit Tutorial

SynDevKit was designed to be both very simple to use and also incredibly

flexible for creating songs of a wide variety of styles. this tutorial covers

the basics of creating new song projects and simple loops, along with more

complex techniques for generating and controlling sound and sequence. while

there is no one best-way of using SynDevKit, it is recommended that when first

learning the environment that you follow the basic guidelines given below.

some methods may seem arbitrary, but at times there are buried reasons for why

operations need to be structured in the fashion that they are. once you become

more familiar with how SynDevKit works, it is certainly possible to bend or

break many of these rules as you wish. but for now pay attention! it will save

you lots of grief.

SynDevKit Register/Mode Requirements

before looking into how to make music with SynDevKit, it is important to

understand which resources are consumed by this development package

and what are the assumed processor states.

 - never use the following registers:

 * I0/L0: pointer to receive buffer

 * I1/L1: pointer to transmit buffer

 * I4/L4: pointer to codec parameter table

 * I7/L7: pointer to audio sample output array

 - the following registers have fixed values/purposes

 * I6: pointer to noise buffer (circular buffer, never change L6)

 * M0: 0

 * M1: 1

 * M6: 0

 * M7: 1

 - the following data processing modes are assumed at function entry/exit. if

 they are modified, they must be placed back into this configuration on

 function exit.

 * ALU saturation enabled

 * fractional multiplication enabled

 * bit reversal disabled

 - the follow system modes are assumed and must never be change

 * all algorithmic processing happens with the primary registers, all

 interrupt processing happens with the secondary registers. only use

 the ena sec_reg instruction in interrupt service routines.

 * interrupt nesting is disabled

 * lastly, always reset any L-registers to zero on function exit. this is

 perhaps the most common bug in working with SynDevKit.

Part A: an introduction to the SynDevKit Command Line
SynDevKit provides a single command-line interface/parser for building and

downloading new songs, along with general maintanence and cleanup of the

SynDevKit environment. all commands are interpretted by sdk.pl, which is

located in the .\tools directory. a batch file (sdk.bat) is provided in the

root directory of SynDevKit. to see a full list of available commands in the

parser, type ‘sdk’ in the root directory. all available commands, along with

possible switches, are outputted to the screen. a basic list of all commands

is given below:

	command
	purpose

	
	

	fb
	build a SynDevKit project

	fb_dl
	build and download a SynDevKit project

	dl
	download a SynDevKit project

	clean
	clean intermediate build files

	clone
	make a copy of an existing project

	tc
	SynDevKit timebase conversion utility

	fc
	SynDevKit datatype format conversion utility

to get help on a specific command, type ‘sdk cmd’, where cmd is the name of
the specific command. for instance, to see the available switches and syntax

for the ‘fb’ command, type ‘sdk fb’ in the root directory of SynDevKit.

please note that the parser is rather basic and expects commands to be given

in the exact order specified in the help instructions. if a SynDevKit command

is malformed, it will either fail in the parser (leading to the usage
information being written to the screen), or the target operation will fail

on its own (for instance building a project with an improper name will fail

at the make stage).

functionality of the sdk parser will be covered throughout the tutorial.

Part A: creating a new song project

in SynDevKit, every song is made in a separate directory with a number of files

dedicated to it. song directories are commonly referred to as projects. SynDevKit

comes with a number of default projects as templates and examples on how to

create music within this environment. to start making music with SynDevKit, it

is first necessary to make a new project. there are two ways to make a new

project in SynDevKit - either with the perl parser or manually. genreally speaking

the parser should be used. however, it is important to understand how to make

new projects from existing ones (to gain understanding of the SynDevKit build

environment and in case the Perl parser cannot handle automatically

recreating a project you’re working with). both methods are covered below:

creating a new project with the parser:

to make a new project using the parser enter the following on the command

line (in the root directory of SynDevKit):

 sdk clone template clonetemplate

this command will launch the cloning script cloneproj.pl. this script creates a

directory called clonetemplate, copies all of the files from template over to

clonetemplate, and makes all of the appropriate source-level changes to enable

clonetemplate to build. also note that cloneproj can be used to create copies

of projects that contain full songs, not just the template project.

for more information, refer to the cloneproj.pl section of SynDevKit PC Software.

manually creating a new project:

cloneproj.pl was made to be as flexible as possible and should be able to

handle a wide variety of source files. however, because automated conversion

can never be perfect, it is important to understand the steps involved

in manually making a new project. these steps are listed below.

1. create a new directory at the same level as gen_fx, chicsys, etc. this

 directory will hold all of the files for a new song.

2. copy all of the files from the template directory to the new directory,

 including the hdr and obj directories

3. change the name of the makefile from template.mak to xxx.mak, where xxx is

 the name of the directory this file is contained in. change the name of

 templateVars.dsp to xxxVars.dsp, where xxx is the name of this directory.

4. modify the filelist inside the .mak such that it reflects the change in name of

 templateVars.dsp.

5. modify the #include in all files in this directory such that the line:

 #include "template.h"

 is now:

 #include "xxx.h"

 this can be done with a global search/replace on template.h INSIDE THE xxx

 DIRECTORY.

6. rename the files template.h, templatevars.h, and templatedefs.h (contained

 in the .\xxx\hdr directory) into xxx.h, xxxvars.h, and xxxdefs.h. edit

 xxx.h such that it reflects these new filenames. for example, if the name

 of the project directory is foo, template.h becomes foo.h, templatevars.h

 becomes foovars.h, and templatedefs.h becomes foodefs.h.

at this point, this new executable should be buildable, although when run it

will not make any sound. to test that the code is building properly, go back to

the root directory of SynDevKit and use the sdk parser to build the project.
because we are not going to download this code to target hardware, the ‘fb’

command should be used. the other switches depend upon the version of the

development tools installed, the build target hardware, and the name of the

project. all four permutations are listed below:

 sdk fb legacy chic xxx (legacy DSP tools, chiclet target, project xxx)

 sdk fb legacy ez81 xxx (legacy DSP tools, 2181 EZ-Kit target, project xxx)

 sdk fb vdsp chic xxx (VisualDSP++ DSP tools, chiclet target, project xxx)

 sdk fb vdsp ez81 xxx (VisualDSP++ DSP tools, 2181 EZ-Kit target, project xxx)

where xxx is the name of the project.

before continuing, a few words should be said about the command line parser and

how it works while building SynDevKit projects. ‘fb’ is used to create a DSP
executable which can then be loaded into the target hardware via the ‘dl’

command (or, the ‘fb_dl’ command can be used to both build and download the

code). ‘fb’ performs the following operations:

 1. runs trackparse1.pl on the target project, which preprocesses the DSP

 assembly files looking for a specific code used in sequencer

 initializations. use of this macro can be found in the ex3 and ex4

 projects, and reference information is available in the SynDevKit PC

 Software section of this document.

 2. the assembler processes all files in the comsys, gen_fx, and the target

 project directories, along with either chicsys or ez81sys, depending on

 which target hardware is selected on the command line.

 3. all assembler files are linked into an executable

 4. basic directory cleanup is performed

also note that if the VisualDSP++ tools are used, the output .dxe DSP

is post-processed so that the DSP downloader can handle it properly. the

final output files from the build process are placed in the root directory,

and the object files from the assembly process are also left in the root
directory. this is done to ease dependency handling in the makefile (this

means that when rebuilding a project only those files which were changes are

re-assembled). however, SynDevKit does not currently handle dependencies

in the header files. therefore, if a header file changes the project should be

built from scratch. this is most easlit done by either running the ‘clean’

command in sdk or be deleting the appropriate object files (either.obj for the

legacy tools or .doj for VisualDSP++). to clean a particular project the

following command is entered:

 sdk clean legacy chic xxx
 or
 sdk clean vdsp chic xxx
depending on which tools are used.

also note that the name of the .exe generated in the build procedure is the

name of the project followed by either ‘_chic.exe’ or ’_ez81.exe’, depending

on the target hardware. for example, if project ex3 was built for the EZ-Kit,

the name of the output executable would be ‘ex3_ez81.exe’.

now that we have a bit of background on how the build system works, it would

make sense to learn a bit more about the files contained within. the basic

SynDevKit files contained in the template project are listed below:

	file
	purpose

	FABCNTR_00.dsp(1)
	controls the number of samples written to the output buffer before krate(4) processing. it is useful for creating noisy glitching effects. under 'normal' circumstances, the AR register should be set to 128 on function return.

	GenFX_00.dsp(1)
	this is where the main audio rate processing occurs, and where the calls to the various generators and effect algorithms are placed.

	GenFXIni_00.dsp(1)
	initialization routines for all generators and effects

	IRQEProc.dsp(2)
	IRQE interrupt service routine. pressing the interrupt button forces execution of this code. can be used for debugging purposes, for skipping track in multisong mode, etc.

	ModFuncs_00.dsp(1)
	location for krate audio algorithms; including sequencing, LFO/memory envelope algorithms, and song control functionality.

	SongCTRL_00.dsp(1)
	jumptables and methods for modifying song parameters over time.

	SongPtrs.dsp(2)
	pointers to functions that control song behaviour and are called directly from the main code (FABCNTR, GenFX, GenFXIni, ModFuncs).

	templateVars.dsp(2), (3)
	variables specific to this directory/song.

	template.mak(2), (3)
	list of all files in template directory. this file must have the same name as the directory it is contained within.

	TrigInit_00.dsp(1)
	utility functions called from Seq2 that retrigger generators and modify algorithmic parameters.

(1) there should be one version of this file for each individual song within a

 SynDevKit project (for example if two songs are a part of project there

 would be FABCNTR_00.dsp and FABCNTR_01.dsp, etc). for more information

 see Part F of the SynDevKit tutorial.

(2) there should be only one copy of this file within a SynDevKit project. for

 example, all variables for an entire SynDevKit project should go into

 templateVars.dsp.

(3) these files are automatically renamed when cloning a project such that they

 match the name of the project. for instance, if the name of the project

 is mysong, templateVars.dso becomes mysongVars.dsp and template.mak
 becomes mysong.mak.

(4) krate refers to control-rate processing (as opposed to audio rate

 processing). krate processing happens at 1/128 the speed of audio rate

 processing. functions such as the sequencer and memory envelopes run at this

 rate. all krate processing occurs inside ModFuncs_00.dsp (and the functions

 that it calls). this terminology is borrowed from cSound.

the hdr directory contains a dummy header file called template.h, which includes

templatevars.h and templatedefs.h. templatevars.h is where variables declared

in templateVars.dsp are declared as .EXTERNAL variables (except for those that

are a part of the sequencer, which are placed in .\gen_fx\hdr\externs.h).

templatedefs.h includes a wide variety of #define values that control the length

of buffers for the sequencer along with additional #define values for the length of

buffers used in the karplus-strong generators.

now that we have a fresh new project ready for makaing music, what do we do?

Part B: overview of how to make a loop

SynDevKit is designed to allow for quick and easy creation of loops, along with

the flexibilty required to design complex musical passages. the two main files

which must be modified are GenFXIni_00.dsp and GenFX_00.dsp. all signal

generators, fx, and envelopes which are used to create sound are initialized

in GenFXIni and called in GenFX. in this example we will generate a single

squarewave at 100Hz which will retrigger every second. what do we need to

make this in SynDevKit?

 1. a wavetable generator (WTGen, WTGen2, or HPWTGen2)

 2. an envelope (ADSRPanEnv or ExpDecayEnv)

 3. initialzation of the sequencer (both it's own variables and the triggering

 buffer)

 4. a call to the appropriate wavetable generator

the first step is to make a clean new project for us to work from. type the

following on the command line:

 sdk clone template firstproj
this creates a new project called firstproj which is functionally equivalent to

the template project. all of the source files we will edit are located in the

.\firstproj directory.

first, let's initialize the wavetable generator. this happens at the beginning

of GenFXIni_00.dsp (where the comment /* insert generators and fx

initializations here */ is located in the code). immediately after the comment, add

in the following code:

 SETPTR(a_WTGen2);

 INIT_WTGEN2(100, ^a_WTSq);

while these two lines look similar to C functional calls, they are not. they

are macro definitions designed to simplify initializing SynDevKit functions.

definitions of these macros can be found in .\gen_fx\hdr\GenFX.h.

the SETPTR macro initializes I2 to point to a_WTGen2 (I2 = ^a_WTGen2; in 218x

assembly language). the INIT_WTGEN2 macro initializes values in the a_WTGen2

array. the first parameter is the frequency (100), and the second parameter is

a pointer to the start of the buffer WTGen2 will read data from to generate its

output. note that ^a_WTSq is actually written into the third location of a_WTGen2.

the second location is an internal variable of WTGen2 and is automatically

initialized by the macro (look for INIT_WTGEN2 in GenFX.h to see how this

macro works).

to get a sense of what these macros do, here’s what the above two macros look

like in assembly:

 I2 = ^a_WTGen2;

 DM(I2, M1) = 100;

 DM(I2, M1) = 0;

 DM(I2, M1) = ^a_WTSq;

note that M1 is always equal to 1, therefore memory is initialized as follows:

	address
	data

	a_WTGen+0
	100

	a_WTGen+1
	0

	a_WTGen+2
	^a_WTSq

it is important to always place a SETPTR macro BEFORE the first initialization

macro of a particular type. if SETPTR is not included in the code, the data

designed to be sent to a_WTGen2 will go wherever I2 happens to be pointing to

at that point in program execution.

it is equally important to note that when initializing multiple SynDevKit

functions, you only use one SETPTR macro. if two WTGen2 functions are wanted,

the INIT_WTGEN2 macros would be placed consecutively, with a SETPTR macro

only coming before the first INIT_WTGEN2 macro. for example, this would look

like:

 SETPTR(a_WTGen2);

 INIT_WTGEN2(100, ^a_WTSq); /* 100Hz squarewave */

 INIT_WTGEN2(150, ^a_WTSq); /* 150Hz squarewave */

for now we will work with the single initialization of the wavetable generator. next,

we should initialize an envelope. every generator must be passed through an

envlope. there are two to choose from - an ADSR (attack, decay, sustain, release)

envelope or an exponential decaying envelope. for this example we'll use an

ADSR. after the initialization of WTGen2, enter the following code:

 SETPTR(a_ADSRPanEnv);

 INIT_ADSRPANENV(128, 0x2000, 0x0100, 0x1000, 10, 0x0100, 0x4000);

note that the SETPTR macro precedes the INIT_ADSRPANENV macro. this macro is

more complicated than the one for WTGen2 and will be broken down in detail:

 ADSRPANENV_UR (128):

 this parameter determines the rate that the ADSR envelope parameters are

 updated. 128 tells the ADSR to only update its parameters every 128

 samples. this is a typical value for this parameter and makes it relatively

 easy to determine the total time of the ADSR envelope in relation to the

 time between note retriggering in the sequencer. this is true because the

 control rate in SynDevKit is 1/128th the rate that audio is generated and

 the sequencer runs at this rate. therefore, if param 0 is set to 128, one

 'tic' of the sequencer occurs every time the ADSR envelope is updated.

 depending on the characteristics of the ADSR and the sound being modified,

 a "zipper noise" may be heard along with the output signal. this is due

 to the stairstep nature of the ADSR envelope. envelope parameter are

 updated at the rate set by ADSRPANENV_UR, and when they are not

 updated their value remains constant. to reduce this distortion, set

 this parameter to a smaller value. the downside to this is that the ADSR

 must perform more calculations, adding to the overall processor load.

 ADSRPANENV_ATTACKRATE (0x2000):

 this is the attack rate of the ADSR. every time the ADSR requests an

 update (in this case every 128 samples), 0x2000 is added to the ADSR scalar

 until it reaches full-scale (0x7fff).

 ADSRPANENV_DECAYRATE (0x0100):

 this is the decay rate of the ADSR. every 128 samples 0x0100 is subtracted

 from the ADSR scalar local variable, until it reaches the sustain height.

 ADSRPANENV_DECAYMIN (0x1000):

 this is the sustain height. the ADSR scalar will clamp at 0x1000 for the

 requested sustain time.

 ADSRPANENV_SUSTAINLEN (10):

 this is the sustain time. the sustain volume is held for 10*128 samples

 (because the update rate of the ADSR is 128)

 ADSRPANENV_RELRATE (0x0100):

 this is the decay rate. the ADSR scalar will decrease by 0x100 until it

 reaches zero. once it reaches zero, the output on this specific track will

 be zero until the ADSR is retriggered.

 ADSRPANENV_PAN (0x4000):

 this is the pan setting for this track. 0x4000 corresponds to center-pan.

 to pan the track all the way to the left set this parameter to 0x0000, and

 set it to 0x7fff to pan all the way to the right.

again, keep in mind that all updates to the ADSR envelope occur at the rate

requested by the first parameter. if the first parameter is modified, all

other ADSR parameters must be updated accordingly if the same total duration

of the envelope is desired.

now we have the wavetable generator and envelope initialized. next, we need

to initialize the trigger and volume buffers for this track. the first track in the

sequencer is hard-coded to use the a_TrigTrack00 and a_VolTrack00 arrays for

holding triggering and volume data, respectively. at the location in

GenFXIni_00.dsp labeled with (/* init TrigTrack and VolTrack arrays as

needed */), include the following code:

 AR = 100;

 AY0 = 0x2000;

 DM(a_TrigTrack00+0) = AR;

 DM(a_VolTrack00+0) = AY0;

a_TrigTrack00 is an array which holds the probabilities that the generator &

envelope will be retriggered at that point in time. values in a_TrigTrack00

should be between 0 and 100 (all locations are initialized to 0 on reset). by

setting a_TrigTrack00+0 to 100, the sequencer will always reset track 0 whenever

it is appropriate (ie 100% chance of retriggering at this stage in the a_TrigTrack00

buffer). the rate that track00 is retriggered is based on parameters set in the

sequencer, which will be explained in a moment.

a_VolTrack00 is another array which contains the volume of the track for that

specific 'hit'. in this case, the volume is set to 0x2000 (full scale is

0x7fff). if the volume is set to 0x0000, no output will be heard, even though

the generator & envelope is retriggered. also note that there is a global scalar

attributed to each track in the sequencer (a_LMixScalars and a_RMixScalars for

left and right channels). at startup, all tracks are set to full-scale

output (0x7fff). these arrays are useful for setting the volume of a track without

needing to scale each value in the appropriate a_VolTrack array. usage of the

global scalar arrays will be covered later in the tutorial.

also note that there are separate a_TrigTrack and a_VolTrack arrays for each

track in the sequencer. in its default configuration, the sequencer is designed

to handle a maximum of 32 tracks (using a_TrigTrack00-a_TrigTrack31 and

a_VolTrack00-a_VolTrack31). these are defined in the project-specific

xxxVars.dsp file (where xxx is the project name).

the last thing we need to do in GenFXIni_00.dsp is to configure the sequencer.

search for 'a_Seq2' in this file. note that there is already an initialization of

the sequencer in this file. this is done because Seq2 is automatically called

(the actual call happens in ModFuncs_00.dsp) and a_Seq2 must hold valid data

or many parts of SynDevKit will fail. modify the pre-existing INIT_SEQ2

macro such that it looks like this:

 INIT_SEQ2(344, 0, 0, 1, ^DummyRet, ADSRENV, ^DummyRet);

an explanation of the parameters is given below:

 SEQ2_TRIGRATE (344):

 this parameter determines the number of 'krates' between incrementing the

 trigger and volume pointers in the sequencer. in this example we wanted

 a squarewave to trigger every second. this means that there must be 44100

 samples between each triggering of the squarewave (because the samplerate

 is 44.1kHz). since we know the sequencer is called every 128 samples, this

 means that this parameter must be equal to (44100/128=~344). if we wanted

 to trigger the squarewave every 0.5 seconds, this parameter would be equal

 to 172. a PC command-line program called timeconv.exe exists in the .\tools

 directory, which is useful for performing conversions between krate and

 BPM, and other operations. for more information, refer to the chapter on

 PC-based software.

 SEQ2_SWINGPER (0):

 this is the swing period. it is only used if there is swing (periodic

 increase and decrease of the trigger rate) on the track. it determines the

 number of steps in the sequencer between the increased and decreased trigger

 rate.

 SEQ2_SWINGAMOUNT (0):

 this is the swing amount. this value is added/subtracted to the trigger

 rate at a rate determined by SEQ2_SWINGPER.

 SEQ2_SEQLEN (1):

 this is the number of steps in a particular sequence. the maximum length

 of a sequence is set by the LENTRACK #define'd values in xxxdefs.h.

 the default value is 128. the sequence length can be any value between 1

 and the LENTRACK value associated with that specific track.

 SEQ2_INITFUNC (^DummyRet):

 this parameter is a pointer to the function executed when this track

 retriggers. the envelope associated with this track is automatically

 initialized by the sequencer when the track is retriggered. however, it

 might be necessary to perform some additional operations when the track

 retriggers (ex: set a new frequency for the particular generator).

 SEQ2_ENVTYPE (ADSRENV):

 the envelope type for this track.

 SEQ2_AUXFUNC (^DummyRet):

 an auxilliary processing routine. this function is called after the

 envelope is re-initialized and can be used for other processing functions.

 typically this parameter is left as a ^DummyRet.

one last thing to note in GenFXIni_00.dsp is the SEQ2_SET_MEASURE macro.

this sets the rate of SongCTRL-based changes to the length of the first track in

the sequencer (344 krates, or ~1 second).

now GenFXIni_00.dsp is properly initialized to generate a squarewave at 100Hz,

pass it through an ADSR envelope, and retrigger it every 1 second. the last thing

to do is place the actual call WTGen2. this is done in GenFX_00.dsp. go to the

location of /* insert generators and fx here */ in this file. immediately after

this comment, place the following code:

 call WTGen2;

 modify(I7, M7);

the first instruction is self-explanatory - it calls the wavetable generator.

the second instruction increments the I7 pointer by 1. all signal generators

write their output to the location I7 points to (and all FX processors work

off of the data located at the location where I7 points to). the modify

instruction ensures that if another signal generator is called after this one,

the output of that generator does not overwrite the value of the first one.

also note that, while the ADSR is called in this function, it does not need to

be explicitly placed in the file. SynDevKit analyzes the parameters of a_Seq2

(specifically the envelope type) and writes the appropriate opcodes to perform

an ADSR envelope. these opcodes are written into the 'nop;' array at ^Env in

GenFX_00.dsp.

and that's it! easy!

rebuild the project using the fb command (sdk fb, along with the appropriate
command line parameters). if everything works, a new .exe will be generated.

download the code to the DSP board (using ‘dl projname_chic.exe’ or

‘dl projname_ez81.exe’, with projname replaced with the actual project name

of course), press IRQE, and (hopefully) listen to some squarewaves. if nothing

is heard (or the build didn't work properly), compare your copies of

GenFXIni_00.dsp and GenFX_00.dsp to those in the 'ex1' project.

(as an aside, SynDevKit uses the pressing of IRQE and a timer to seed a random

number generator. SynDevKit then writes 511 random values in a_RandLUT, which

is used in a wide variety of functions. essentially everywhere there is a read

from I6, SynDevKit is fetching a random value. after calculating these random

values, SynDevKit begins initialization of generators and FX, and eventually

starts writing data to its internal buffers.)

at this point you can try experimenting with different parameters in the

sequencer, ADSRPanEnv, or WTGen2 functions (such as modifying the frequency,

wavetable pointer to one of the other wavetable arrays, pan, or trigger rate of

the sequencer).

the preceding steps cover most of the basic tasks required to get basic loops

working on SynDevKit. in summary, they are:

 in GenFXIni:

 1. initialize all generators

 2. initialize an envelope for each generator

 3. initialize the TrigTrack and VolTrack buffers for each generator

 4. initialize each track of the sequencer for every generator

 in GenFX:

 5. place the calls to generators in the appropriate order (track00 goes

 first, etc etc)

more advanced techniques of using SynDevKit will be covered in Part C.

Part C: creating multiple tracks, using FX, memory modifiers and SongCTRL

this part of the tutorial is an explanation of project ex2. while this song is

far more complicated sounding than ex1, much of what constitutes this song is

covered in the previous tutorial. try building and running this project using

the appropriate .bat file (using the ‘sdk fb_dl’ command along with the

appropriate command-line arguments). ok, now let’s see what it takes to make

this kind of loop by first examining GenFXIni_00.dsp.
at the beginning of this file, a number of initializations of generators is

performed. this song includes:

 - two wavetable generators

 - three karplus strong generators

 - two probabilistic noise generators

 - two FM synthesizers

as previously noted, when more than one generator is required in a song, the

initialiations must happen sequentially. the three initializations of the

karplus strong generator (INIT_KSGEN) are placed right after each other,

without any SETPTR macros. the SETPTR macro sets I2 equal to the address

passed to it. after the first INIT_KSGEN macro, I2 points to the right place

for the second initialization of the a_KSGen buffer. do not place another

SETPTR macro between initialzations as the original parameter initializations

will be overwritten. also, be sure to always group together all initializations

of a particular type.

in this loop, the wavetable generator is used to create the basedrum sound,

along with the fastest high lead. the karplus strong generators make the

pitched noise percussion sounds. ProbSynthGen is used for the digital

squarewaves which rise and fall in frequency. lastly, FM2Op0Gen makes the bass

and lead sounds. while SynDevKit is capable of making an incredibly wide

variety of sounds (both using traditional and unique synthesis techniques), this

project demonstrates a good overview of some tricks used to make "normal"

synthesizer sounds.

bass drum:

a common and simple method of creating a bass drum is with a low-pitch sine

wave which is pitch-shifted downwards from the attack. this is accomplished

with an initialization of a wavetable generator (WTGen2) and a memory envelope

(MemEnv3). MemEnv3 applies an attack/decay envelope on a location in memory.

the first initialzation of MemEnv3 in project ex2 applies a decaying pitch

envelope to the first call to a_WTGen2. here's the macro:

 INIT_MEMENV3(^a_WTGen2+(0*WTGEN2_VARS)+WTGEN2_FREQ, 120, 120, 1, 0, 120);

the first parameter indicates the address where the memory modification will

be applied. while it might me more succinct to write this as '^a_WTGen2' (since 0*WTGEN2_VARS is zero, and WTGEB2_FREQ is also zero), it is recommended to

use create offsets into parameter arrays using more explicit code. this is true

for a couple reasons:

 1. it helps future-proof your code. if the frequency parameter changes

 location in the a_WTGen2 array, this initialization would not need to

 be changed.

 2. accesssing specific parameters in any array becomes a highly structued

 operation. for instance, accessing the next three WTGEN2_FREQ parameters

 would be:

 ^a_WTGen2+(1*WTGEN2_VARS)+WTGEN2_FREQ

 ^a_WTGen2+(2*WTGEN2_VARS)+WTGEN2_FREQ

 ^a_WTGen2+(3*WTGEN2_VARS)+WTGEN2_FREQ

 in general, this method is used for accessing all gen_fx parameters.

the next three parameters are the start attack value, end attack value, and the

number of control rate tics between moving from the start to end frequency.

the last two values are the end decay value and the number of control rate

tics between moving from the end attack to end decay value. in summary, this

initialization of MemEnv3 causes the frequency of the first WTGen2 to go from

120Hz-0Hz in 120 'krates' (approximates 350ms). a couple things to note:

 1. MemEnv3 does not require the rate of change in the attack or decay

 envelopes to be a whole number (ie in this case the rate is 1Hz/krate).

 MemEnv3 uses division to calculate the proper rate of change, so

 fractional rate changes are interpolated (ie a rate change of 1.5 would

 lead to the parameter changing by 1, 2, 1, 2, etc).

 2. calls to MemEnv3 are automatically handled in ModFuncs_00.dsp

 GenFXIni_00.dsp is processed by SynDevKit to determine the number of

 initializations of MemEnv3, setting the v_NumMemEnv3 variable and making

 the appropriate number of calls to MemEnv3.

 3. MemEnv3 must be reset every time the sequencer triggers a new hit on

 that track. this is handled with the RESET_MEMENV3 macro in

 TrigInit_00.dsp. this file will be covered in detail later in this tutorial.

along with setting up the wavetable generator, an envelope should be initialized

for the base drum. while either an ADSR or and exponential decay envelop can

be used, exponential decays are generally nicer sounding with base drums, along

with being more computationally efficient. the decay envelope for the base drum

is:

 INIT_EXPDECAYENV(4, 0x7ff0, 0x4000);

the first parameter is the hold period for exponential decay. in this case,

a new exponential decay value is calculated every four samples. the exponential

decay value is 0x7ff0, and the output is center-panned. remember, the decay

value is in 1.15 format, so the largest value expected for that parameter is

0x7fff. the number 0x7ff0 is approximately equal to 0.9995. therefore, every

four samples, ExpDecayEnv multiplies its current internal scalar by 0.9995,

and stores this newly calculated value as its new internal scalar, causing the

output to decline

hihat/pitched percussive noise:

a common method of creating hihat/snare/percussive noises is with the karplus

strong (KS) synthesizer. there are actually 2 KS synths in SynDevKit: KSGen

and ProbKSGen. KSGen is a much simpler generator and suffers from saturation

errors when the KSGEN_AVEFAC parameter is set above 0x4000. this makes KSGen

less useful for pitched melodic sounds. however, the overflow errors actually

make KSGen useful for generating noises appropriate for drum synthesis

(ProbKSGen can also be used for generating noises and can create many noises

KSGen cannot, but at times KSGen is a better choice).

the first two parameters generate the main hihat sound on the 2/4 beats. the

reason two hihats are generated is because one hihat is routed primarily to the

left channel and the other to the right channel. specifically, the two KSGen

use the first two initializations of the INIT_ADSRPANENV macro:

 INIT_ADSRPANENV(128, 0x7fff, 0x0010, 0x0000, 0, 0x0000, 0x1000);

 INIT_ADSRPANENV(128, 0x7fff, 0x0010, 0x0000, 0, 0x0000, 0x7000);

note that the only difference between these two initialzations is the pan

parameter. the first KS generator goes primarily to the left channel, while the

second KS generator primiarly goes to the right channel. this makes the sound

much fuller and alive. because the KS generators are fed from a noise

buffer and the data in the noise buffer is always changing, there are small

differences in output between each triggering of KSGen. these small changes

make multiple KS generators with the same parameters panned left and right

sound much fuller than a single KS generator with a center-pan.

the last KS generator creates the fast high-pitched noisy ticking sound. unlike

like the previous hihat sound, only 1 KS generator is used. while a second KS

generator would add to the overall sound, the ADSP-2181 EZ-Kit does not have

enough MIPS to handle this additional generator, along with all of the other

generators required to make this loop. this is a continual tradeoff in writing

music in SynDevKit. at times it can be frustrating, but it can also spur on

creativity, as you need to work within certain processing constraints.

this last KS generator is paired with another ADSRPanEnv with the same

parameters as the previous ADSR envelopes, except that the ADSR output is

center-panned.

the last KS generator shows how to use an LFO with a generator. the 3rd

initialization of LFO3 is for this KS generator. the parameters passed to this

macro are:

 INIT_LFO3(28, 39, ^a_WTSine, 0x8, 0x1f, ^a_KSGen+(2*KSGEN_VARS)+KSGEN_FREQ);

similar to MemEnv3, LFO3 applies a modification to a particular memory location.

the first two parameters set the hold period and frequency of the LFO. in this

case, the LFO is updated every 28 control rate tics. the frequency parameter

is equal to 39/128 Hz (approximately 0.3Hz). this is rate that the LFO would

run at if the first parameter was set to 1. however, since it is set to 28, the

LFO runs 28 times slower than that, or approximately 0.0109 Hz. the next two

parameters set the modulation amount and base value. in this case, the maximum

value is (0x1f+0x8=39) and the minimum value is (0x1f-0x8=23). the last

parameter is the location where the LFO'ed value is to be written. in this

case, it is written into the KSGEN_FREQ parameter of the 3rd KSGen generator.

one very important thing to remember is that the LFO is actually applied to the

4th value in its parameter list and then written to the specified location, rather

than the LFO reading the specified location, applying an LFO to that value,

and writing it back to that location. this means that if a different base frquency

is desired for the KS generator, it must be written into the LFO parameter list

rather than the KSGen parameter list. changing the parameter in KSGen will not

do anything, as it will be overwritten the next time LFO3 executes.

also remember that, similar to MemEnv3, LFO3 calls are automatically handled in

ModFuncs_00.dsp. the same general procedure is followed here, where the

GenFXIni_00.dsp file is parsed and all INIT_LFO3 macros cause the v_NumLFO3

variable to increment by one.

lead/FM synthesizers:

a total of three melodic synthesizers are used in this loop - two FM synths and

one wavetable synth (which has an LFO and MemEnv assosciated with it to fake

an FM synth).

the FM synthesizer used in this loop is a simple 2 operator synth, where an

audio rate signal is generated, passed through an ADSR envelope, and the output

signal is used to modulate the carrier frequency. FM synthesis is good for

siumulating a wide variety of sounds (such as brass and reed instruments), and

even better for creating new and interesting evolving sounds and textures. two

FM synths are declared, along with one ADSR for the long lower sounds, along

with an exponential decay envelope for the shorter, middle-pitched sounds.

the last melodic synthesizer is another wavetable generator with an LFO and

memory envelope applied to the LFO modulation amount. while this is not as

full-featured as the FM synthesizer in SynDevKit, it is less expensive

computationally and may be a useful configuration if MIPS are at premium. a

summary of how this last synthesizer works is given below:

 1. the basic synthesizer is WTGen2 (the 2nd initialization of WTGen2 sets up

 this function call)

 2. in ModFuncs_00.dsp, MemEnv3 is called before LFO3. therefore, the 2nd

 MemEnv3 is called, which has its parameters set up to apply a memory

 envolpe from 220-0 to the modulation amount of the 4th LFO3 call over 60

 control rate tics.

 3. LFO3 is called. the modulation frequency is (220*128) = 220Hz (remember

 LFO3 is called at 1/128th the audio rate). the modulation amount varies

 from 220-0, due to the MemEnv3 call. the base frequency of the modulator

 is reset every time WTGen2 is retriggered by the sequencer and the target

 memory location of LFO3 is the WTGEN2_FREQ parameter of the 2nd
 WTGen2 call.

additional noises:

the last signal generator used in this loop is a probabilistic noise generator

(ProbSynthGen). this generator creates a random output with probabilities for

the 8 MSBs to be set/cleared based on the parameters passed to the function.

it also uses sample/hold to clamp the output to a simgle value for the number

of samples specified by the first parameter. in this case, the output is held

for (128*42=5376) samples, and then a new output is generated. why was this

particualr value used? the idea here was to have a noise which would be in sync

with the other elements of the loop. in particular, the base sequencer rate

in this loop is 28 (0.081263 seconds). therefore, the output of ProbSynthGen

changes 1.5x slower than the base sequencer rate (28*1.5=42). this adds an

additional rhythmic element to the loop. also, because the output values of

ProbSynthGen are always changing (because the 8 MSBs are set in a probabilistic

fashion), the rhythmic output constantly changes in timbre.

the first FX function is also introduced with this track - the state-variable

filter (SVFFX). this function applies a simple 6db filter to the input signal,

and can be configured for lowpass, highpass, bandpass, or notch outputs. in

this case, the filter is set to bandpass. this makes ProbSynthGen fit better

into the overall mix of the music, as ProbSynthGen tends to generate a lot of

audio content across a wide range of frequencies (since ProbSynthGen is

related to a square wave). two LFOs are applied to parameters of the SVF.

these two parameters control the cutoff/resonant frequency of the filter. the

LFOs runs twice as fast as the LFO used on the 3rd KS generator (because

the hold period is 14 rather than 28). the LFO on the bandpass filter causes

the frequencies passed through the SVF to rise and fall slowly over time.

one other interesting characteristic of this track is that the envelope applied

to it has a decay rate of 0x0000. this means that once the ADSR passes through

the attack stage, it will be stuck in the decay stage until the track is

triggered again. this is a simple way of turning on a track for continuous

sound.

that is a description of all the sounds used in this loop. the next section

covers how the sequencer arrays are initialized to create the patterns heard

in this loop.

TrigTracks, VolTracks, CTRLTracks, TrigInit, and the sequencer:

as previously mentioned, TrigTrack is used to control the probability that a

track will be retriggered at that particular instant. because the TrigTrack

arrays are automatically init'ed to zero on reset, it is only necessary to set

the locations that are supposed to be non-zero.

let's take a closer look at the first track, which controls the base drum. the

code used for setting up the a_TrigTrack00 array is:

 AR = 100;

 ...

 DM(a_TrigTrack00+0) = AR;

 DM(a_TrigTrack00+16) = AR;

 DM(a_TrigTrack00+20) = AR;

 DM(a_TrigTrack00+28) = AR;

along with initializing a_TrigTrack00, a_VolTrack00 must also be initialized.

the code that takes care of this is:

 AY0 = 0x2000;

 ...

 DM(a_VolTrack00+0) = AY0;

 DM(a_VolTrack00+16) = AY0;

 DM(a_VolTrack00+20) = AY0;

 DM(a_VolTrack00+28) = AY0;

the other elements of a_VolTrack00 need not be initialized, as it is not

possible to trigger a new basedrum sound at any other location (all other

a_TrigTrack00 values are zero).

taking another look at the first initialization INIT_SEQ2, note how the first

function pointer is no longer ^DummyRet, but rather InitBD0_00. this function

is called every time the note is retriggered. normally, the file TrigInit_00.dsp

holds all of the retrigger initialization functions. opening this file, we can see

that InitBD0_00 has the following code associated with it:

InitBD0_00:

 RESET_MEMENV3(0);

 rts;

the RESET_MEMENV3(0) macro resets the attack/decay envelope which is used to

modify the frequency of the wavetable generator from 120Hz-0Hz. if this macro

was not included here, when the base drum retriggered, the frequency would be

stuck at 0Hz, as MemEnv3 must be explicity reset.

the next two tracks follow a similar pattern as the base drum. each one sets

a couple locations in its a_TrigTrack and a_VolTrack arrays to cause new snare

drum hits at a specific volume, and each one calls a retriggering function to

perform a particular operation. in this case, InitKS0_00 and InitKS1_00 refill the

noise buffer associated with that KS generator. whenever a KS generator is

retriggered, it is necessary to refill its noise buffer. the functions

FillKS0Buff-FillKS7Buff take care of this operation automatically.

the third KS generator (4th track overall) has a slightly more complex

initializations. first, it uses a probability other than 100% for the hit at

location DM(a_TrigTrack03+1). it is set to 30. this means that 30% of the time

a new note will trigger at this location, and 70% it will not. additionally,

the VolTrack array is initialized with different values at location 0 and

location 1.

the sequencer also uses swing for this track. the swing period is set to 4,

and the swing amount is set to 3. assuming a base period of 28, the time

between tics in the sequencer for this track would be:

 31, 31, 31, 31, 25, 25, 25, 25, 31, 31, 31, 31, 25, etc, etc

note that after 8 steps through the sequencer, the total time elapsed is the

same as if there were 8 steps at a rate of 28. therefore, this track still

runs at the same rate as another track without swing which has a rate a multiple

of 28. also note that this track has a sequence length of 2. one of the more

powerful features of SynDevKit is that each track can have a unique length.

this makes it very easy to make long evloving loops from a few short sequences.

in this case, the loop does not phase over time because 2 divides perfectly into

32 (but if it had been equal to 3, 5, 6, 7 etc it would go out of phase and

back in again).

next, we have sequencer initializations for the first FM synthesizer and an

introduction to control tracks. control tracks are a method of modifying

generator/fx parameters every time a track is retriggered. one common use for

control tracks is to change the pitch every time a track is retriggered. first,

we can see that the first FM synth has one initialization in a_TrigTrack04 &

a_VolTrack04 (setting the probability to 100 and volume to 0x1000). below the

last trigger/volume initializations (for track 07) there are a series of macros

for setting up the control track. the first macro sets I2 equal to the address

of ap_CTRLTrack04. next, we initialize the first location of ap_CTRLTrack04 to

be equal to the total number of control tracks (the maximum number is eight).

in this case, the number of control tracks is equal to NUMCTRLTRACK04 (which is

set to 1 in .\ex2\hdr\ex2def.h). lastly, we include one INIT_AP_CTRLTRACK macro

for each control track. this macro writes the length of a_CTRLTrack04_0 into

ap_CTRLTrack04, and then writes a pointer to the start of a_CTRLTrack04_0 into

the next location of ap_CTRLTrack04. in summary, these three macros perform the

following operation:

 I2 = ^ap_CTRLTrack04;

 DM(I2, M1) = NUMCTRLTRACK04; /* number of control tracks (1) */

 DM(I2, M1) = LENCTRLTRACK04_0; /* length of 1st control track */

 DM(I2, M1) = a_CTRLTrack04_0; /* ptr to head of 1st ctrl track */

the control track #define'd values are initialized in .ex2\hdr\ex2defs.h, and

the control track arrays are defined in .\ex2\ex2Vars.dsp. in the default

configuration of SynDevKit, all of the NUMCTRLTRACK parameters are set to

one. if a control track is desired for a particular track, the approrpriate

NUMCTRLTRACK should be set to the number of control tracks that will

be associated with it. next, the length of the control track needs to be set

where the LENCTRLTRACK #define values are initialzied. in this case,

LENCTRLTRACK04_0 is set to 4, because there are 4 values in this control track.

control tracks must be circular buffers - this means that once the last element

of the control track is read, the next time the track is retriggered the first

value from the control track will be read. also note that control tracks need

not be the same length as the sequencer track. in this track, the control track

is set to length 4, while the length of the sequence is 1.

after the parameters are written into ap_CTRLTrack04, the actual control data

can be written into a_CTRLTrack04_0. in this example, the control track is

designed to hold frequency information to be fed into the FM synthesizer every

time it is retriggered. this is handled by the following code:

 I2 = ^a_CTRLTrack04_0;

 AR = DM(a_MIDIFreq+C_3);

 DM(I2, M1) = AR;

 AR = DM(a_MIDIFreq+E_3);

 DM(I2, M1) = AR;

 AR = DM(a_MIDIFreq+G_3);

 DM(I2, M1) = AR;

 AR = DM(a_MIDIFreq+D_3);

 DM(I2, M1) = AR;

a_MIDIFreq is an 128 element array which holds frequency values for each MIDI

value. this code fetches the frequency for MIDI note C_3, E_3, G_3, and D_3.

the '_3' values are defined in GenFX.h, and provide offsets into the MIDI

frequency table.

the 2nd FM synthesizer (track 05) and 2nd wavtable synthesizer (track 07) follow

a similar initialization pattern to track 04. first, the ap_CTRLTrack is set

up following the same methodology used for track 04. then the NUMCTRLTRACK

and LENCTRLTRACK values are defined for the track. lastly, the a_CTRLTrack

values are written into the array.

track 06 is the probabilistic noise generator. note that since it is a

continuous sound (the ADSR decay was set to 0x0000), the track is one one tic

long. the length of the sequence could be set to any value. 28*64 is just as good

as 117 or anything else when the track is continually playing.

one last thing to notice in GenFXIni is the usage of the SEQ2_SET_MEASURE

macro. this macro sets the length of a measure (which controls how fast the

jump table in SongCTRL_00.dsp is parsed). in this example, the length of a

measure is set to the length of the first track (28*32 tics, or ~2.6 sec).

it is also possible to set the length of a measure directly with the

SET_TICS_PER_MEASURE macro.

now that the initialization procedure has been covered, let's look at where

the generators and FX are called - GenFX_00.dsp. function call(s) are made

for the appropriate generators and FX for each track, and when all processing

is done for a particular track, a 'modify(I7, M7);' instruction is inserted

between tracks. remember, all generators and FX write their output to the

address pointed to by I7 (and FX units read their input from that same location).

note that there are eight tracks in this project, and there are eight calls to signal

generators and eight modify instructions. the order of the function calls must

match the order given in the sequencer. for instance, track 00 is set up to control

the basedrum, and the call to WTGen2 is the first call in GenFX_00.dsp. also note

the first usage of FX in this function. the call to ProbSynthGen is immediately

followed by a call to SVFFX. the output of ProbSynthGen is available for SVFFX

to process. also note that there are not any calls to MemEnv3 or LFO3 in

this file. those functions are automatically handled in ModFuncs_00.dsp, and

should not be included here.

one new file to consider in this project is TrigInit_00.dsp. this file is

designed to handle all of the retriggering functions (basically all of the

function pointers in the sequencer array). there are a series of entry points

into small retriggering functions. a brief explanation of what each of these

functions do is given below:

InitBD0_00:

 the RESET_MEMENV3(0) macro is used to reset the internal state of the first

 MemEnv3 initialization. this sets up the attack/decay envelope to do another

 120Hz-0Hz transition when the basedrum hit is retriggered.

InitKS0_00:

 FillKS0Buff loads a_KSBuff0 with random data. whenever a KS generator is

 retriggered, its noise buffer (typically a_KSBuff0-a_KSBuff7) must also be

 initialized.

InitKS1_00:

 similar to InitKS0_00, but for the 2nd KS generator.

InitKS2_00:

 similar to InitKS0_00, but for the 3rd KS generator.

InitFM0_00:

 first, the RESET_FM2OP0GEN(0) macro is used to reset the internal state of

 the FM synthesizer (specifically the state of the ADSR envelope used on the

 modulating waveform). next, the first location of a_CTRLData is read. this

 is where the control data initialized in a_CTRLTrack04_0 is made available to

 retriggering functions. the data from the first control track is always

 written to a_CTRLData+0. if additional control tracks are set up, their data

 is made available in a_CTRLData+1, a_CTRLData+2, etc. a_CTRLData is an eight

 element array - therefore eight values can be passed from eight distinct

 control tracks into a_CTRLData and be made available in retriggering. after

 the control data is read, it is written into the FM2OP0_BASECARR parameter

 of the first FM synthesizer. this sets a new carrier frequency for the FM

 synthesizer every time the generator is retriggered.

InitFM1_00:

 this retriggering function follows the exact same pattern as InitFM0_00. the

 2nd FM synthesizer is initialized for retriggering via the RESET_FM2OP0GEN

 macro. next, the control data is read from a_CTRLData+0 and passed into the

 FM2OP0_BASECARR parameter of the 2nd FM synthesizer.

InitSine0_00:

 this function first initializes the 2nd MemEnv3 envelope, which is tied to

 the LFO3 which modifies the frequency of the 2nd wavtable generator. next,

 control data is read from a_CTRLData+0 and passed into the LFO3_BASE parameter

 of the 4th LFO3 generator. note that the frequency data is passed into the

 LFO rather than the wavetable generator itself. this is because the LFO is

 controlling the output frequency of the 2nd wavetable generator and it does

 not take into consideration any frequency data stored in the wavetable

 generator parameters. LFO3 completely sets the frequency of this generator.

TrigInit allows for a lot of flexibility in how different signal generators are

retriggered. the basic retriggering requirements and recommendations are

covered in the SynDevKit Generators, Effects, and Envelopes section of this document.

however, beyond these basic suggestions, a wide variety of options are available

here. any number of modifications to SynDevKit parameters can happen here,

including modifications to the TrigTrack and VolTrack arrays, generator and FX

parameters, etc etc. the example given here shows the most basic and common

processing functions.

lastly, let's look at SongCTRL_00.dsp. this file is basically a codified method

of applying changes to a song from measure to measure. at the top of the file

there is a counter loop which increments v_TicCNTR and checks to see if it is

equal to v_TicsPerMeasure. if not, the function immediately exits. if it is

equal, control passes further into SongCTRL. v_TicsPerMeasure is the parameter

which is set by the SEQ2_SET_MEASURE and SET_TICS_PER_MEASURE macros.

next, v_CurrMeasure is used to provide an offset into Measure_JT, which

determines which function in the jumptable is executed. the first time

SongCTRL is entered, MuteFMLead1 is called (because v_CurrMeasure is set to

zero on reset), and the code at this location is run. the code at MuteFMLead1

mutes the 6th track, which happens to be one of the FM synthesizers. after

muting this track, EndSongCheck is executed. this increments v_CurrMeasure and

checks if it is larger than the total measures in the song (v_MeasuresPerSong,

set by analyzing the distance between Measure_JT and EndMeasure_JT). if we're

not at the end of the measures, SongCTRL is exited. if we are, v_CurrMeaure

is reset to zero. this forces the song to start over again at the beginning

(note that it will not perform the full re-initialzation of generator/fx parameters in

GenFXIni_00.dsp, so the song may not sound the same on subsequent times

through the jumptable).

the next three times the jumptable is accessed, the code at DoNothing is

executed, which, as expected, does nothing. it simply goes to EndSongCheck,

increments v_CurrMeasure, and performs the check for the end of the song. in

the 5th measure UnMuteFMLead1 is executed, which unmutes the 2nd FM synth.

measures 6-8 do nothing. once the last DoNothing is executed, v_CurrMeasure is

set to zero and the next time Measure_JT is accessed, MuteFMLead1 is executed.

this is how this loop plays indefinitely. the total time to traverse all eight

measures is (8*2.6) = 20.8 seconds.

this is a very comprehensive description of the ex2 project. while there

certainly is a lot to remember, it is probably easiest to learn more about

SynDevKit by making small changes to different parameters and hearing the

effects of these changes, be they pleasant, unpleasant, or nothing is heard at

all. this example should provide ideas on how to make your own songs and some

of the built in methods and infrastructure for making writing music with

SynDevKit as easy as possible.

one very important thing to remember is that one of the defining features of

SynDevKit is that it allows access to parameters that are normally not available

in other modular synthesis packages and that there is an extreme level of

flexibility available when working at such a low level. however, with this

flexibilty comes the opportunity to cause horrible crashes of the environment

with even simple changes to the code. learn which rules can be broken and which

cannot.

Part D: using SETTRACK and trackparse1.pl

in Part C we saw how to create a fairly complicated loop using direct

initializations of the TrigTrack and VolTrack arrays. along with this direct

method of initializing the sequencer, SynDevKit provides for a more symbolic

approach. this is accomplished with the SETTRACK preprocessing directive

and trackparse1.pl. an example of how this macro is used is in project ex3.

this project generates a simple rhythmic loop using two kick drums, one high

pitched sawwave, two filtered noise generators, and four karplus-strong

generators. the initializations for these functions are placed in GenFXIni_00.dsp.

however, before considering trackparse1.pl, let’s look a bit closer at the

initializations of the generators, fx, and memory envelopes. one thing to note

in the function initializations is the introduction of MemEnv2, which is a

multi-stage exponential decay memory envelope. while this function serves

many purposes. one very important reason for its inclusion into SynDevKit

is that this sort of memory envelope is very useful for controlling the frequency

of kick drums. a decent kick drum can be modeled with a sine wave with a

multi-stage exponential decay memory envelope on the frequency parameter.

the ex3 project uses two such memory envelopes with slightly different

parameters for each kick drum. the first kick drum has a frequency which decays

between 700Hz and 20Hz, while the second kick drum’s frequency decays between

400Hz and 20Hz. note how the decay constant varies between 0x6400 for the first

stage and 0x7f80 for the last constant. this means that the frequency of the

drum will decay very quickly at first, and as the frequency lowers the rate of

decay quickly slows down. for more information on how MemEnv2 works refer

to the MemEnv2 section of the SynDevKit Generators, FX, and Envelopes section

of this document.

another important thing to note is that there aren’t any TrigTrack and VolTrack

initializations in GenFXIni. after the initializations of the SynDevKit functions

the sequencer initializations occur. while it is mandatory to place all of these

initializations inside GenFXIni, the TrigTrack and VolTrack arrays do not have

such a dependency. in this case the initializations are placed in SongCTRL_00.dsp.

in most cases where something more complicated than a basic loop is being

written, SongCTRL is where initializations to the TrigTrack and VolTrack arrays

belong. the initialization of these arrays is handled by the SETTRACK macro,

which can be found on line 115.

before moving to an explanation of the SETTRACK macro it is important to

understand how SETTRACK is handled by SynDevKit. before all the DSP files

are assembled and linked into an executable, trackparse1.pl is run on all files

in the target project directory. trackparse1.pl looks for all instances of

SETTRACK and replaces them with the apprpriate DSP code. SETTRACK is not

handled by the assembler! this is why SETTRACK is placed within comments.

the assembler does not know how to handle SETTRACK and an assembly error

would be reported if it was not placed in comments.

once SETTRACK is found and trackparse1.pl creates the appropriate DSP file,

it creates a new file with the same filename as the parsed file but with a

“parsed_” prepended to it. for instance, if the SETTRACK marco was written

to SongCTRL_00.dsp, trackparse1.pl would create a new file called

parsed_SongCTRL00.dsp which would contain the initializations as derrived by

trackparse1.pl. note that trackparse1.pl does not modify the original file in

any way. it only creates new files with the proper code inserted into them.

one other thing to note about how SynDevKit uses trackparse1.pl is that,

prior to any processing by trackparse1.pl, all files in the target project

directory which start with “parsed_” are deleted. this is done to avoid

reprocessing already- processed DSP files. therefore, any changes that need

to be made to files which contain SETTRACK should be made in the original

file, not the “parsed_” file.

the SETTRACK macro creates a simple interface to the TrigTrack and VolTrack

arrays by providing a symbolic (almost graphical) view of initializations of

the various tracks in a song. the first nine lines of the SETTRACK macro

determine exactly which locations of the TrigTrack and VolTrack arrays will be

initialized. each track has one line devoted to it, and requires four parameters.

the first parameter determines if the TrigTrack and VolTrack arrays are cleared

before the new data from the SETTRACK macro is written into them. this is

used for choosing between incremental changes (by setting the first parameter

to NOCLEAR) or a completely new initialization (by setting the first parameter

to CLEAR) to the sequencer arrays. the second parameter sets the offset into

the TrigTrack/VolTrack arrays. normally this parameter is set to zero. however,

if you are splitting a single TrigTrack/VolTrack into multiple smaller arrays

this allows for providing an automatic offset to simplify the initialization

process. the next parameter determines which track will receive the

initialization data. in this case, all 9 tracks are initialized in sequential

order. however, any number of tracks can be initialized in any order that is

desired. additionally, the actual locations of where the TrigTrack/VolTrack

initialzations will be placed are specified. for example, in track00, there

will be a TrigTrack/VolTrack initialization at offsets 0, 16, and 28. track01

has initializations at offsets 8, 14, and 24. all locations which have a dash

(‘-‘) are not initialized. also note that any combination of symbols can be

used in a single track. for instance track00 could have “a”, “b”, and “c”

initializations within it. it just happens that this loop uses the same letters

for each track. lastly, it is important to note that the number of

initializations in a track line does not affect the sequencer parameter which

controls the actual length of the track. for instance, if 16 initializations

are made in SETTRACK for a particular track but the sequencer data only

indicates that the length of the track is 8 steps, the last 8 initializations

will be ignored.

after the nine lines which determine where sequencer initializations will

happen, there are six lines which set the actual initialzation values for

each of the tracks. for instance, the line “a, 100, 0x3000” means that every

location where there is an “a” in the code will have a TrigTrack setting of

100 and a VolTrack setting of 0x3000. the same basic procedure is followed

for each of the symbols in the sequencer initialization.

the last line of SETTRACK must be ‘END); */’. the parser is specifically
looking for this string - if it is not found the parser will fail.

when this file is parsed by trackparse1.pl, the output is written to

parsed_SongCTRL00.dsp. the actual code that was generated is written starting

at line 115, and is listed below:

/*

 * autogenerated code for SETTRACK macro

 */

 I2 = ^a_TrigTrack00;

 I3 = ^a_VolTrack00;

 CNTR = 128;

 do CL00114 until CE;

 DM(I2, M1) = 0;

CL00114: DM(I3, M1) = 0;

 I2 = ^a_TrigTrack01;

 I3 = ^a_VolTrack01;

 CNTR = 128;

 do CL01114 until CE;

 DM(I2, M1) = 0;

CL01114: DM(I3, M1) = 0;

 I2 = ^a_TrigTrack02;

 I3 = ^a_VolTrack02;

 CNTR = 128;

 do CL02114 until CE;

 DM(I2, M1) = 0;

CL02114: DM(I3, M1) = 0;

 I2 = ^a_TrigTrack03;

 I3 = ^a_VolTrack03;

 CNTR = 128;

 do CL03114 until CE;

 DM(I2, M1) = 0;

CL03114: DM(I3, M1) = 0;

 I2 = ^a_TrigTrack04;

 I3 = ^a_VolTrack04;

 CNTR = 128;

 do CL04114 until CE;

 DM(I2, M1) = 0;

CL04114: DM(I3, M1) = 0;

 I2 = ^a_TrigTrack05;

 I3 = ^a_VolTrack05;

 CNTR = 128;

 do CL05114 until CE;

 DM(I2, M1) = 0;

CL05114: DM(I3, M1) = 0;

 I2 = ^a_TrigTrack06;

 I3 = ^a_VolTrack06;

 CNTR = 128;

 do CL06114 until CE;

 DM(I2, M1) = 0;

CL06114: DM(I3, M1) = 0;

 I2 = ^a_TrigTrack07;

 I3 = ^a_VolTrack07;

 CNTR = 128;

 do CL07114 until CE;

 DM(I2, M1) = 0;

CL07114: DM(I3, M1) = 0;

 I2 = ^a_TrigTrack08;

 I3 = ^a_VolTrack08;

 CNTR = 128;

 do CL08114 until CE;

 DM(I2, M1) = 0;

CL08114: DM(I3, M1) = 0;

 /* inits for a */

 AX0 = 100;

 AX1 = 0x3000;

 DM(a_TrigTrack00+0+0) = AX0;

 DM(a_VolTrack00+0+0) = AX1;

 DM(a_TrigTrack00+0+16) = AX0;

 DM(a_VolTrack00+0+16) = AX1;

 DM(a_TrigTrack00+0+28) = AX0;

 DM(a_VolTrack00+0+28) = AX1;

 /* inits for b */

 AX0 = 100;

 AX1 = 0x2000;

 DM(a_TrigTrack01+0+8) = AX0;

 DM(a_VolTrack01+0+8) = AX1;

 DM(a_TrigTrack01+0+14) = AX0;

 DM(a_VolTrack01+0+14) = AX1;

 DM(a_TrigTrack01+0+24) = AX0;

 DM(a_VolTrack01+0+24) = AX1;

 /* inits for c */

 AX0 = 100;

 AX1 = 0x0600;

 DM(a_TrigTrack02+0+4) = AX0;

 DM(a_VolTrack02+0+4) = AX1;

 DM(a_TrigTrack02+0+20) = AX0;

 DM(a_VolTrack02+0+20) = AX1;

 DM(a_TrigTrack02+0+30) = AX0;

 DM(a_VolTrack02+0+30) = AX1;

 /* inits for d */

 AX0 = 100;

 AX1 = 0x0100;

 DM(a_TrigTrack03+0+2) = AX0;

 DM(a_VolTrack03+0+2) = AX1;

 DM(a_TrigTrack04+0+2) = AX0;

 DM(a_VolTrack04+0+2) = AX1;

 DM(a_TrigTrack03+0+8) = AX0;

 DM(a_VolTrack03+0+8) = AX1;

 DM(a_TrigTrack04+0+8) = AX0;

 DM(a_VolTrack04+0+8) = AX1;

 DM(a_TrigTrack03+0+16) = AX0;

 DM(a_VolTrack03+0+16) = AX1;

 DM(a_TrigTrack04+0+16) = AX0;

 DM(a_VolTrack04+0+16) = AX1;

 DM(a_TrigTrack03+0+24) = AX0;

 DM(a_VolTrack03+0+24) = AX1;

 DM(a_TrigTrack04+0+24) = AX0;

 DM(a_VolTrack04+0+24) = AX1;

 DM(a_TrigTrack03+0+26) = AX0;

 DM(a_VolTrack03+0+26) = AX1;

 DM(a_TrigTrack04+0+26) = AX0;

 DM(a_VolTrack04+0+26) = AX1;

 DM(a_TrigTrack03+0+28) = AX0;

 DM(a_VolTrack03+0+28) = AX1;

 DM(a_TrigTrack04+0+28) = AX0;

 DM(a_VolTrack04+0+28) = AX1;

 /* inits for e */

 AX0 = 100;

 AX1 = 0x2000;

 DM(a_TrigTrack05+0+8) = AX0;

 DM(a_VolTrack05+0+8) = AX1;

 DM(a_TrigTrack06+0+8) = AX0;

 DM(a_VolTrack06+0+8) = AX1;

 DM(a_TrigTrack05+0+24) = AX0;

 DM(a_VolTrack05+0+24) = AX1;

 DM(a_TrigTrack06+0+24) = AX0;

 DM(a_VolTrack06+0+24) = AX1;

 /* inits for f */

 AX0 = 100;

 AX1 = 0x1800;

 DM(a_TrigTrack07+0+0) = AX0;

 DM(a_VolTrack07+0+0) = AX1;

 DM(a_TrigTrack08+0+0) = AX0;

 DM(a_VolTrack08+0+0) = AX1;

 DM(a_TrigTrack07+0+2) = AX0;

 DM(a_VolTrack07+0+2) = AX1;

 DM(a_TrigTrack08+0+2) = AX0;

 DM(a_VolTrack08+0+2) = AX1;

 DM(a_TrigTrack07+0+4) = AX0;

 DM(a_VolTrack07+0+4) = AX1;

 DM(a_TrigTrack08+0+4) = AX0;

 DM(a_VolTrack08+0+4) = AX1;

 DM(a_TrigTrack07+0+6) = AX0;

 DM(a_VolTrack07+0+6) = AX1;

 DM(a_TrigTrack08+0+6) = AX0;

 DM(a_VolTrack08+0+6) = AX1;

 DM(a_TrigTrack07+0+12) = AX0;

 DM(a_VolTrack07+0+12) = AX1;

 DM(a_TrigTrack08+0+12) = AX0;

 DM(a_VolTrack08+0+12) = AX1;

 DM(a_TrigTrack07+0+14) = AX0;

 DM(a_VolTrack07+0+14) = AX1;

 DM(a_TrigTrack08+0+14) = AX0;

 DM(a_VolTrack08+0+14) = AX1;

 DM(a_TrigTrack07+0+16) = AX0;

 DM(a_VolTrack07+0+16) = AX1;

 DM(a_TrigTrack08+0+16) = AX0;

 DM(a_VolTrack08+0+16) = AX1;

 DM(a_TrigTrack07+0+18) = AX0;

 DM(a_VolTrack07+0+18) = AX1;

 DM(a_TrigTrack08+0+18) = AX0;

 DM(a_VolTrack08+0+18) = AX1;

 DM(a_TrigTrack07+0+19) = AX0;

 DM(a_VolTrack07+0+19) = AX1;

 DM(a_TrigTrack08+0+19) = AX0;

 DM(a_VolTrack08+0+19) = AX1;

 DM(a_TrigTrack07+0+20) = AX0;

 DM(a_VolTrack07+0+20) = AX1;

 DM(a_TrigTrack08+0+20) = AX0;

 DM(a_VolTrack08+0+20) = AX1;

 DM(a_TrigTrack07+0+22) = AX0;

 DM(a_VolTrack07+0+22) = AX1;

 DM(a_TrigTrack08+0+22) = AX0;

 DM(a_VolTrack08+0+22) = AX1;

 DM(a_TrigTrack07+0+26) = AX0;

 DM(a_VolTrack07+0+26) = AX1;

 DM(a_TrigTrack08+0+26) = AX0;

 DM(a_VolTrack08+0+26) = AX1;

 DM(a_TrigTrack07+0+28) = AX0;

 DM(a_VolTrack07+0+28) = AX1;

 DM(a_TrigTrack08+0+28) = AX0;

 DM(a_VolTrack08+0+28) = AX1;

 DM(a_TrigTrack07+0+30) = AX0;

 DM(a_VolTrack07+0+30) = AX1;

 DM(a_TrigTrack08+0+30) = AX0;

 DM(a_VolTrack08+0+30) = AX1;

 DM(a_TrigTrack07+0+31) = AX0;

 DM(a_VolTrack07+0+31) = AX1;

 DM(a_TrigTrack08+0+31) = AX0;

 DM(a_VolTrack08+0+31) = AX1;

as you can see, SETTRACK greatly simplifies the initialization of

TrigTrack/VolTrack arrays, especially when specific rhythms are desired and

they are not to be generated in an algorithmic/generative fashion. a couple

further things to note about SETTRACK:

 * it is possible to have more than one SETTRACK macro in a file.

 * the syntax of SETTRACK is flexible in some ways and inflexible in others.

 to be safe, the example given above should be followed as much as possible

 in your own code. specifically, trackparse1.pl requires that the start

 and stop comments (‘/* and ‘*/’) must be placed on the line with SETTRACK

 and on the last line of the macro. SETTRACK is rather flexible in how to

 construct the lines the sequencer initializations for a particular track.

 SETTRACK ignores whitespace, so it is possible to split the dashes and

 symbols in any way that is logical for a particular sequence. also note

 that SETTRACK is case sensitive, meaning that you could use a lowercase

 letter for normal initializations and the uppercase equivalent for accents

 in that track.

additional information on trackparse1.pl is given in the trackparse1.pl section

of the SynDevKit PC Sotware chapter of this document.

the rest of the ex3 project follows the same basic guidelines covered in ex2.

Part E: preset handling in SynDevKit

PartF: placing multiple songs in a single .ex e

- using endsong, songptrs

Part G: advanced synthesis and sequencing techniques

- multiple control tracks

- multigen

- syncing two tracks

- using memenv3 with sequencer

SynDevKit Generators, Effects, and Envelopes

this chapter describes all of the various functions of SynDevKit. a wide

array of signal generators, effects, and envelopes are provided in this

package. while the tutorial covers how functions can be used and exactly

where they should be used, this chapter covers all of the possible sound

generation, modification and sequencing options built into this package.

also note that, in the description of the parameters for the SynDevKit

functions all parameters, both visible and hidden by the macro

initializations, are described. the parameters which are normally hidden

by the macro call are displayed in italics. it is not necessary to understand

how these parameters function for normal usage of these functions. these

parameters and their description is inculded in case special usage of these

functions is desired.

random numbers and SynDevKit

 while not a signal generator, approximate white noise/equally distributed

 random numbers are always available by accessing the buffer (a_RandLUT)

 pointed to by I6. this register should never be set to another memory

 location as it is assumed to be pointing to random data at all times.

 this noise buffer is 511 elements long and is partially re-randomized every

 128 samples (at the krate). when the buffer is re-randomized, certain

 values are filtered out of the random stream. these values are (0x0000,

 0x7fff, 0x8000, 0x8001). this is done to make random boundary checking for

 certain functions easier to manage.

 a_RandLUT can also be used in conjunction with wavetable-based LFOs for

 random LFO outputs.

 the simplest way to generate white noise is to write the following in

 GenFX_00.dsp:

 AR = DM(I6, M7);

/* read random number, I6++ */

 DM(I7, M6) = AR;

/* write to out array */

 /* place FX functions here (filters, etc) */

 modify(I7, M7);

/* prepare for next sample, I7++ */

 it is also possible to use a_RandLUT with WTGen/WTGen2. this would only be

 interesting if the frequency of the generator is set lower than 344 Hz, as

 it should lead to an essentially lowpass filtered noise (because the noise

 buffer is read slower than one element per sample, and there is linear

 interpolation between noise samples).

making multiple calls to the same function

 the number of function initializations/calls of a particular generator or

 effect is set by the xxx_CALLS #define associated with each function in

 GenFX.h. for example, in the default build of SynDevKit, 8 BitmaskFX

 function calls can be safely made (because BITMASKFX_CALLS is defined as

 8). the BITMASK_CALLS and BITMASK_VARS values are used in GenFXVar.dsp to

 determine the total size of the a_BitmaskFX array. if more calls are

 required than are allocated for in GenFX.h, increase the xxx_CALLS parameter

 accordingly. additionally, if a function is not being used and you are

 running out of data memory for your project, the xxx_CALLS parameter can

 be reduced appropriately.

datatypes and expected ranges

 the ADSP-218x processor is designed to handle 16bit fixed-point data. a full

 discussion and explanation of fixed-point datatypes is beyond what i want

 to get into here. one resource for understanding the basics of fixed-

 point math and datatypes is here:

 http://www.analog.com/Analog_Root/static/library/dspManuals/pdf/

 fum_Appendix_C.pdf

 other resources for fixed point math are available online.

 in general, SynDevKit uses 16bit, 1.15 datatypes for its mathematical

 operations. the output of signal generators is assumed to be in 1.15

 format, and most internal processing occurs in this format. this means that

 if a number is expected to be positive (for example, the attack rate on

 an ADSR envelope), it should be set between 0x0000-0x7fff. values between

 0xffff-0x8000 are negative numbers in 1.15 format and should not be used.

 there are also times when 16.0 format is used to represent data. usually

 this is obvious. for instance, the values used in the sequencer to set

 probabilities of generator retriggering should be between 0-100, standing

 for 0%-100% trigger rates.

 also, there are a couple generators and fx which use 16.16 format for

 representing 32bit input parameters. this means that least significant word

 is unsigned 0.16 format and the most significant word is 16.0 signed format.

 the expected range values in the tables below give the values that

 parameters can be that should not cause SynDevKit to crash. however, this

 does not mean that the output with parameters set to these values will

 necessarily be useful or even audible. however, experimentation is one of

 the keys to getting interesting results with SynDevKit, so feel free to try

 breaking whatever rules or suggestions provided below. just be sure to

 turn down your amplifier first!

function name:

 ADSRPanEnv

file name:

 ADSRPan.dsp

associated variables and functions:

 a_ADSRPanEnv/p_ADSRPanEnv - parameters for ADSR envelope + pan

parameter definition:

	parameter
	description
	expected value

	
	
	

	ADSRPANENV_UR
	ADSR update rate
	0x0000-0x7fff

	ADSRPANENV_RC
	internal ADSR rate counter
	0x0000-0x7fff

	ADSRPANENV_INTSCALAR
	internal ADSR envelope value
	0x0000-0x7fff

	ADSRPANENV_STAGE
	internal ADSR stage
	0x0000-0x0003

	ADSRPANENV_ATTACKRATE
	ADSR attack increment value
	0x0000-0x7fff

	ADSRPANENV_DECAYRATE
	ADSR decay decrement value
	0x0000-0x7fff

	ADSRPANENV_DECAYMIN
	ADSR decay minimum
	0x0000-0x7fff

	ADSRPANENV_SUSTAINLEN
	ADSR sustain time
	0x0000-0x7fff

	ADSRPANENV_SUSTAINCNT
	internal ADSR sustain counter
	0x0000-0x7fff

	ADSRPANENV_RELRATE
	ADSR release rate
	0x0000-0x7fff

	ADSRPANENV_SCALAR
	ADSR scalar
	0x0000-0x7fff

	ADSRPANENV_PAN
	ADSR pan
	0x0000-0x7fff

initialization example:

/*

 * init ADSR for 128 samples between updates, 0x100 attack increment,

 * 0x200 decay decrement, sustain height of 0x2000, sustain period of

 * 100*128 samples, release rate of 0x4 and center-focused sound

 */

 SETPTR(a_ADSRPanEnv);

 INIT_ADSRPANENV(128, 0x0100, 0x0200, 0x2000, 100, 0x0004, 0x4000);
retrigger initialization information:

 if an ADSR envelope is attached to a signal generator with Seq2 then the ADSR

 is re-inited automatically. if a custom retriggering mechanism is used, the

 following memory locations must be reset:

 a_ADSRPanEnv + ADSRPANENV_RC

 a_ADSRPanEnv + ADSRPANENV_INTSCALAR

 a_ADSRPanEnv + ADSRPANENV_STAGE

 a_ADSRPanEnv + ADSRPANENV_SUSTAINCNT

misc information:

 ADSRPanEnv is a standard ADSR envelope along with a signal panning control

 mechanism. the range of the pan parameter is from 0x0000-0x7fff. 0x0000

 is an all-left pan, 0x4000 sends the output to both channels equally and

 0x7fff is an all-right pan. pan is implemented in a simple linear fashion.

 the rate control (a_ADSRPanEnv+ ADSRPANENV_UR) is useful for smoothing

 fast moving ADSRs. if the ADSR update rate is set too high, a zipper-like

 sound can be heard along with the controlled signal. to minimize this noise

 reduce the rate control value to move the ADSR "steps" closer together. note

 that the ADSR does not update itself on a sample by sample basis - instead it

 only updates its output when the internal rate counter equals the selected

 rate. therefore, the ADSR scalar is a ‘stairstep’ value, which can lead to

 some distortion.

 when using a sequencer with the ADSRPanEnv envelope the sequencer must be

 init'ed with the ADSRENV envelope type to tie the specified track to the

 proper envelope. for more information, refer to the documentation on the

 Seq2 processing element.

function name:

 AlgoSineGen

 AlgoSineSatGen

file name:

 AlgoSine.dsp

 AlgoSineSat.dsp

associated variables:

 a_AlgoSineGen/p_AlgoSineGen - parameters for AlgoSine function

 a_AlgoSineSatGen/p_AlgoSineSatGen - parameters for AlgoSineSat function

 a_AlgoSineCoeff - "standard" coefficients for AlgoSineGen/AlgoSineSatGen

 a_MIDIFreq[128] - array of MIDI frequencies

parameter definition:

 AlgoSineGen

	parameter
	description
	expected value

	
	
	

	ALGOSINEGEN_PHASEINC
	frequency
	0x0000-0x7fff

	ALGOSINEGEN_CURRPHASE
	internal current phase
	0x0000-0xffff

	ALGOSINEGEN_COEFF0
	coefficient 0
	0x0000-0xffff

	ALGOSINEGEN_COEFF1
	coefficient 1
	0x0000-0xffff

	ALGOSINEGEN_COEFF2
	coefficient 2
	0x0000-0xffff

	ALGOSINEGEN_COEFF3
	coefficient 3
	0x0000-0xffff

	ALGOSINEGEN_COEFF4
	coefficient 4
	0x0000-0xffff

 AlgoSineSatGen

	parameter
	description
	expected value

	
	
	

	ALGOSINESATGEN_PHASEINC
	frequency
	0x0000-0x7fff

	ALGOSINESATGEN_CURRPHASE
	internal current phase
	0x0000-0x7fff

	ALGOSINESATGEN_COEFF0
	coefficient 0
	0x0000-0xffff

	ALGOSINESATGEN_COEFF1
	coefficient 1
	0x0000-0xffff

	ALGOSINESATGEN_COEFF2
	coefficient 2
	0x0000-0xffff

	ALGOSINESATGEN_COEFF3
	coefficient 3
	0x0000-0xffff

	ALGOSINESATGEN_COEFF4
	coefficient 4
	0x0000-0xffff

initialization example:

 /* 100 Hz sinewave for AlgoSine */

 SETPTR(a_AlgoSine);

 INIT_ALGOSINEGEN(100, 0x3240, 0x0053, 0xAACC, 0x08B7, 0x1CCE);

 /* 100 Hz sinewave for AlgoSineSat */

 SETPTR(a_AlgoSineSat);

 INIT_ALGOSINESATGEN(100, 0x3240, 0x0053, 0xAACC, 0x08B7, 0x1CCE);
retrigger initialization information:

 when retriggering either AlgoSineGen or AlgoSineSatGen, it may be desirable

 to reset the phase. if this is not done, an offset impulse at the start of

 the signal might be heard, depending on the phase and envelope type. the

 follow macros are provided for resetting the phase of these two generators:

 /* reset phase of 1st call to AlgoSineGen */

 RESET_PHASE_ALGOSINEGEN(0);

 /* reset phase of 4th call to AlgoSineSatGen */

 RESET_PHASE_ALGOSINESATGEN(4);
 additionally, macros are provided to load control data (loaded from a

 CTRLTrack to a_CTRLData) into the frequency parameter of the AlgoSine

 fucntions. macros are provided for loading a direct frequency value and

 for loading a frequency based on a MIDI note number:

 /* load 3rd AlgoSineGen with freq data in a_CTRLData+1 */

 CTRLDATA_TO_ALGOSINEGEN_FREQ(1, 2);

 /* load 5th AlgoSineGen with MIDI note data in a_CTRLData+2 */

 CTRLDATA_TO_ALGOSINEGEN_FREQ_MF(2, 4);

 /* load 1st AlgoSineSatGen with freq data in a_CTRLData+4 */

 CTRLDATA_TO_ALGOSINESATGEN_FREQ(4, 0);

 /* load 2nd AlgoSineSatGen with MIDI note data in a_CTRLData+0 */

 CTRLDATA_TO_ALGOSINESATGEN_FREQ_MF(0, 1);
misc information:

 AlgoSineGen is a taylor-series approximation of a sinewave. additional

 harmonics can be generated by modifying the coefficients. however, beyond

 a certain point saturation occurs. if this is not desireable, AlgoSineSat

 provides some protection. saturation protection is provided at the cost

 of 5-6 processor cycles.

 there is a bug in AlgoSineSatGen. saturation currently works only in one

 "direction" - making the output go too negative will cause the same sort

 of distortion heard in AlgoSineGen.

function name:

 BitmaskFX

file name:

 Bitmask.dsp

associated variables and functions:

 a_BitmaskFX/p_BitmaskFX - parameters for bitmask function

parameter definition:

	parameter
	description
	expected value

	
	
	

	BITMASKFX_TYPE
	bitmask type (and, or, xor)
	(1)

	BITMASKFX_MASK
	bitmask value
	0x0000-0x7fff

	BITMASKFX_MIX
	bitmask mixing scalar
	0x0000-0x7fff

(1) BITMASK_TYPE should be taken from list of possible bitmask types in GenFX.h.

 these are BITMASKFX_AND, BITMASKFX_OR, and BITMASKFX_XOR.

initialization example:

/*

 * init bitmask for an xor with 0x1278, mix value of 0x1000

 */

 SETPTR(a_BitmaskFX);

 INIT_BITMASKFX(BITMASKFX_XOR, 0x1278, 0x1000);

misc information:

 BitmaskFX applies is an effect function which applies a bitmask to a

 generator. it is similar to OscComb, except that it only uses one

 generator (Osccomb combines two generator outputs together). the mix

 function determines the level of processed audio which is passed through

 the effect and added to the original mix. for example, if BITMASKFX_MIX

 is set to 0x4000, 50% of the resulting signal will come from the BitmaskFX

 function and 50% will come from the input signal.

 #define values are provided for decimation of the input signal. to decimate

 the output, feed one of the DECIMATExx values into the 2nd location of

 a_BitmaskFX and BITMASKFX_AND into the 1st location.

function name:

 ClampFX

file name:

 Clamp.dsp

associated variables and functions:

 a_ClampFX/p_ClampFX - parameters for ClampFX function

parameter definition:

	parameter
	description
	expected value

	
	
	

	CLAMPFX_CLAMPMAX
	max output
	0x0000-0x7fff

initialization example:

/*

 * init ClampFX for maximum output of +/-0x2000

 */

 SETPTR(a_ClampFX);

 INIT_CLAMPFX(0x2000);

misc information:

 ClampFX applies a hard maximum output to the input signal. the clamper

 works on both positive and negaive inputs. therefore, if ClampFX is set

 to 0x2000, the output will be bounded between 0xe000-0x2000 (+/- 1/4 in

 1.15 fractional notation). ClampFX is applied before the envelope stage,

 meaning that the envelope’s scalar further scales the clamped output.

function name:

 CopiedGen

file name:

 CopiedGen.dsp

associated variables and functions:

 a_CopiedGen/p_ CopiedGen - parameters for CopiedGen function

parameter definition:

	parameter
	description
	expected value

	
	
	

	COPIEDGEN_READGEN
	generator to copy
	0x0000-0x001e

initialization example:

/*

 * init CopiedGen to read from track04

 */

 SETPTR(a_CopiedGen);

 INIT_COPIEDGEN(4);

misc information:

 CopiedGen reads the output of one generator and makes it the basis of a

 new audio track. this new audio track could then have additional audio

 processing performed on it. note that CopiedGen reads the audio output

 before it is passed through an envelope, so it will be an unscaled input

 and will not be affected by how the copied track is triggered. also note that

 the only parameters that make sense for CopiedGen are numbers which are

 less than the track CopiedGen is being used for. for example, if CopiedGen

 is used for the 3rd track in a song, the initialization parameter should be

 either 0 or 1.

function name:

 DelaySynGen

file name:

 DelaySyn.dsp

associated variables and functions:

 a_DelaySynGen/p_DelaySynGen - parameters for killtime function

 a_DelayBuff0[[LENDSBUFF0] - DelaySynGen buffer 0

 a_DelayBuff1[[LENDSBUFF1] - DelaySynGen buffer 1

parameter definition:

	parameter (1)
	description
	expected value

	
	
	

	param0
	length of delay line
	0x0001-LENDSBUFF0/1

	param1
	pointer into delay line
	(2)

	param2
	number of filter coeffs
	(3)

	param3
	coefficient 0
	0x0000-0xffff

	param4
	coefficient 1
	0x0000-0xffff

	...
	...
	0x0000-0xffff

	paramN
	coefficient (N-3)
	0x0000-0xffff

 (1) because DelaySynGen takes a variable number of parameters, #define macros

 do not exist for its parameters

(2) this parameter must point to the start of a circular PM buffer.

(3) initializations of DelaySynGen must take into consideration the #define'd

 value DELAYSYNTHGEN_VARS. the number of filter coefficient must never be

 greater than (DELAYSYNTHGEN_VARS-3).

initialization example:

/*

 * init DelaySyn to process a 400 tap delay line (called a_DSBuff1), with

 * filter coefficieints 0x4000, 0x2000, 0xb000.

 */

 SETPTR(a_DelaySynGen);

 DM(I2, M1) = 400;

 DM(I2, M1) = ^a_DelayBuff1;

 DM(I2, M1) = 3;

 DM(I2, M1) = 0x4000;

 DM(I2, M1) = 0x2000;

 DM(I2, M1) = 0xb000;

retrigger initialization information:

 functions are provided (in InitFunc.dsp) for refilling a_DelayBuff0 and

 a_DelayBuff1 with noise data. these functions are:

 /* fill a_DelayBuff0 with noise */

 call FillDB0;

 /* fill a_DelayBuff1 with noise */

 call FillDB1;

 these functions are normally called in the TrigInit.dsp, one for each

 DelaySynGen function.

misc information:

 the first noticable difference between DelaySynGen and other gen/fx

 functions is that it does not have a macro tied to it. this is because the

 number of parameters consumed by DelaySyn is configurable. it is 3 + the

 number of filter coefficients passed to it. regardless, the SETPTR macro

 should be used to set the I2 register to the start of a_DelaySyn such that

 the proper post processing happens in FillGenFXPtrInits.

 it is also very important to note that the delay lines used by DelaySyn must

 be placed in PM, not DM. therefore, it cannot use the same delay lines as

 the other KS generators (ProbKSGen, etc).

 this function can be hard to configure, as the output of the delay line

 varies greatly based on the filter coefficients. however, careful tweaking

 can lead to very interesting results.

function name:

 Exp1Gen

file name:

 Exp1.dsp

associated variables and functions:

 a_Exp1Gen/p_Exp1Gen - parameters for Exp1Gen function

parameter definition:

	parameter
	description
	expected value

	
	
	

	EXP1GEN_RATE
	update rate
	0x0000-0x7fff

	EXP1GEN_CURRCOUNT
	internal rate count
	0x0000-0x7fff

	EXP1GEN_OLDOUT
	old output
	0x0000-0xffff

	EXP1GEN_A
	“a” parameter
	0x0000-0xffff

	EXP1GEN_B
	“b” parameter
	0x0000-0xffff

	EXP1GEN_C
	“c” parameter
	0x0000-0xffff

	EXP1GEN_D
	“d” parameter
	0x0000-0xffff

initialization example:

/*

 * init Exp1Gen for an update rate of 20, a=0x1234, b=0xb764, c=0x6687,

 * d=0xabe5

 */

 SETPTR(a_Exp1Gen);

 INIT_EXP1GEN(20, 0x1234, 0xb764, 0x6687, 0xabe5);

retrigger initialization information:

 when retriggering Exp1Gen, it may be desireable to reset the internal state

 of the function. the following macro is provided for this purpose:

 /* reset internal count and old output of 3rd call to Exp1Gen */

 RESET_EXP1GEN(2);

misc information:

 Exp1Gen implements an "exponential generator", which in this case is the

 following function:

 newout = (oldout*a^3) - (oldout*b^2) + (oldout*c) - d

 oldout = newout

 or something like that.

 it's not the most interesting signal generator but it's integrated and it

 doesn't break SynDevKit and there must be some useful outputs lurking in

 there.

function name:

 ExpDecayEnv

file name:

 ExpDecay.dsp

associated variables and functions:

 a_ExpDecayEnv/p_ExpDecayEnv - parameters for ExpDecayEnv function

parameter definition:

	parameter
	description
	expected value

	
	
	

	EXPDECAYENV_DECRATE
	env update rate
	0x0000-0x7fff

	EXPDECAYENV_INTCOUNT
	internal rate counter
	0x0000-0x7fff

	EXPDECAYENV_DECCONST
	decay constant
	0x0000-0x7fff

	EXPDECAYENV_INTSCALAR
	env internal scalar
	0x0000-0x7fff

	EXPDECAYENV_SCALAR
	env scalar
	0x0000-0x7fff

	EXPDECAYENV_PAN
	env pan
	0x0000-0x7fff

initialization example:

/*

 * init ExpDecayEnv update rate of 10, decay constant 0x7ff0, 0x3000 scalar,

 * center pan (0x4000)

 */

 SETPTR(a_ExpDecayEnv);

 INIT_EXPDECAYENV(10, 0x7ff0, 0x3000, 0x4000);

retrigger initialization information:

 if an ExpDecay envelope is attached to a signal generator via a sequencer

 (ex: Seq2) then the envelope is re-inited automatically. if a custom

 retriggering mechanism is used, the following memory locations must

 be reset:

 a_ExpDecayEnv + EXPDECAYENV_INTCOUNT

 a_ExpDecayEnv + EXPDECAYENV_INTSCALAR

misc information:

 ExpDecayEnv applies an exponentially decaying envelope to a generator. it

 starts at full-scale (0x7fff), and with each iteration multiplies the scalar

 by the decay constant. because we are using 1.15 fractional math, each

 multiplication causes the scalar to approach 0x0000. the rate at which

 the decay constant is applied is determined by the decay update rate. a

 rate of 10 means that the decay constant is applied every 10 samples.

 the scaled sampled is then passed through a general scalar, and is then fed

 through a pan function and into the left and right channel outputs. panning

 in ExpDecayEnv is the same as in ADSRPanEnv - 0x4000 is center pan, 0x0000

 for full left-pan, and 0x7fff for full right-pan.

function name:

 ExpImpulseGen

file name:

 ExpImpulse.dsp

associated variables and functions:

 a_ExpImpulseGen/p_ExpImpulseGen - parameters for ExpImpulseGen function

parameter definition:

	parameter
	description
	expected value

	
	
	

	EXPIMPULSEGEN_DECRATE
	decay constant
	0x0000-0x7fff

	EXPIMPULSEGEN_VOL
	internal volume
	0x0000-0x7fff

initialization example:

/*

 * init ExpImpulseGen for impulse with decay constant of 0x6000

 */

 SETPTR(a_ExpImpulseGen);

 INIT_EXPDECAYENV(0x6000);

retrigger initialization information:

 when ExpImpulseGen is retriggered, there are multiple macros available for

 the retriggering operation. one macro re-initializes EXPIMPULSEGEN_VOL to

 0x7fff. an example usage of this macro is given below:

 /* reset the 2nd ExpImpulseGen function */

 RESET_EXPIMPULSEGEN_FS(1);

 it is also possible to refill the EXPIMPULSEGEN_VOL with a random number

 with:

 /* reste 2nd ExpImpulseGen function with random volume */

 RESET_EXPIMPULSEGEN_RANDOM(1);

 note that this value is fed into the exponential decay calculation.

 therefore by changing the value of this parameter, the entire duration of

 the decay waveform is changed.

misc information:

 ExpImpulseGen generates a single exponetially-decaying waveform. this

 serves the purpose of being an impulse function with configurable width.

 to generate a very narrow impulse, set the EXPIMPULSEGEN_DECRATE parameter

 to a low number. wider impulses are generated by values that approach

 0x7fff.

 also note that the exponential decay envelope is the recommended envelope

 for exponential impulses. this is due to the fact that this envelope starts

 at full scale, while an ADSR starts at 0. the exponential impulse can

 decay extremely quickly, so it is important that the amplitude of the

 envelope is as great as possible when the generator is retriggered.

function name:

 FM2Op0Gen

file name:

 FM2OpGen.dsp

associated variables and functions:

 a_FM2Op0Gen/p_FM2Op0Gen - parameters for FM2Op2Gen

 a_MIDIFreq[128] - array of MIDI frequencies

 a_WTSine[129] - circular buffer of 128pt sine wave

 a_WTTri[129] - circular buffer of 128pt triangle wave

 a_WTSaw[129] - circular buffer of 128pt sawtooth wave

 a_WTSq[129] - circular buffer of 128pt square wave

 a_RandLUT[511] - circular buffer to array of noise

parameter definition:

	parameter
	description
	expected value

	
	
	

	FM2OP0_MODFREQ
	modulating frequency
	0x0000-0x7fff

	FM2OP0_MODOLDPH
	mod internal phase
	0x0000-0xffff

	FM2OP0_MODLUT
	mod wavetable LUT
	(1)

	FM2OP0_ABSFREQ
	mod absolute value on output
	0x0000-0x0001

	FM2OP0_MODENV_UR
	mod env update rate
	0x0000-0x7fff

	FM2OP0_MODENV_RC
	mod env internal rate count
	0x0000-0x7fff

	FM2OP0_MODENV_INTSCALAR
	mod env internal scalar
	0x0000-0x7fff

	FM2OP0_MODENV_STAGE
	mod env stage
	0x0000-0x0003

	FM2OP0_MODENV_ATTACKRATE
	mod env attack rate
	0x0000-0x7fff

	FM2OP0_MODENV_DECAYRATE
	mod env decay rate
	0x0000-0x7fff

	FM2OP0_MODENV_DECAYMIN
	mod env decay min
	0x0000-0x7fff

	FM2OP0_MODENV_SUSTAINLEN
	mod env sustain length
	0x0000-0x7fff

	FM2OP0_MODENV_SUSTAINCNT
	mod env sustain count
	0x0000-0x7fff

	FM2OP0_MODENV_RELRATE
	mod env release rate
	0x0000-0x7fff

	FM2OP0_MODENV_SCALAR
	mod env scalar
	0x0000-0x7fff

	FM2OP0_BASECARR
	carrier base frequency
	0x0000-0x7fff

	FM2OP0_CARROLDPH
	carrier internal phase
	0x0000-0xffff

	FM2OP0_CARRLUT
	carrier wavetable LUT
	(2)

(1), (2) parameter should point to a 129 element circular wavetable (aligned on

 a 256 word boundary). SynDevKit provides a sine wave (a_WTSine),

 square wave (a_WTSq), triangle wave (a_WTTri), and sawtooth wave

 (a_WTSaw). also note that these parameters can point into the random

 array a_RandLUT, as it is properly aligned.

initialization example:

/*

 * init FM2Op0Gen for sinewave modulator/carrier, 100Hz modulator & 200Hz

 * carrier, no abs value on modulator, ADSR with 128 sample update rate,

 * 0x1000 attack rate, 0x0800 decay rate, 0x1000 sustain height, 50 sustain

 * count, 0x0010 decay rate, and maximum scale of 150.

 */

 SETPTR(a_FM2Op0Gen);

 INIT_FM2OP0GEN(100, ^a_WTSine, 0, 128, 0x1000, 0x0800, 0x1000, 50, 0x0010,

 150, 200, ^a_WTSine);

retrigger initialization information:

 when retriggering an FM2Op0Gen generator, use the following macro:

 /* reset the 2nd FM2Op0Gen, ADSR and phase of modulator/carrier */

 RESET_FM2OP0GEN(1);

 additional macros are provided for reading control data for both the

 modulator and carrier frequencies from a_CTRLData, both in absolute

 frequency and in MIDI notes:

 /* load absolute carrier freq of 1st FM2Op0Gen with data in a_CTRLData+1 */

 CTRLDATA_TO_FM2OP0GEN_CARRFREQ(1, 0);

 /* load MIDI carrier freq of 2nd FM2Op0Gen with data in a_CTRLData+5 */

 CTRLDATA_TO_FM2OP0GEN_CARRFREQ_MF(5, 1);

 /* load abs modulator freq of 3rd FM2Op0Gen with data in a_CTRLData+2 */

 CTRLDATA_TO_FM2OP0GEN_MODFREQ(2, 2);

 /* load MIDI carrier freq of 4th FM2Op0Gen with data in a_CTRLData+6 */

 CTRLDATA_TO_FM2OP0GEN_MODFREQ_MF(6, 3);

misc information:

 FM2Op0Gen implements a standard FM synthesizer, where the output of the

 modulator is fed into the frequency input of the carrier. both the

 modulator and carrier are based on general wavetable generators. therefore,

 either one can generate sine, triangle, sawtooth, sqaurewaves, or white

 noise, depending on the pointer passed to the appropriate wavetable

 synthesizer. the modulator has an ADSR envelope immediately following it,

 allowing for tight control of the output (and hence the input frequency to

 the carrier). the scalar parameter on the ADSR controls the maximum output

 of the modulating frequency.

 FM2Op0Gen is a computationally expensive signal generator. it runs 2

 wavetable generators and a ADSR envelope to generate a single signal. it is

 also possible to generate some computationally simpler FM outputs by using

 memory envelopes and LFOs on the input to a single wavetable generator.

function name:

 GenSHFX

file name:

 GenSHFX.dsp

associated variables and functions:

 a_GenSHFX/p_GenSHFX - parameters for GenSHFX function

parameter definition:

	parameter
	description
	expected value

	
	
	

	GENSHFX_HOLDPER
	hold period for S/H
	0x0000-0x7fff

	GENSHFX_HOLDCNT
	hold period internal counter
	0x0000-0x7fff

	GENSHFX_HOLDVAL
	clamped output
	0x0000-0xffff

initialization example:

/*

 * hold audio for 8 samples

 */

 SETPTR(a_GenSHFX);

 INIT_GENSHFX(8);

misc information:

 GenSHFX is an audio rate sample & hold function. it outputs the same value

 every n samples, where n is the parameter fed into the initialization macro.

 after n samples, it outputs the previously computed value and updates the

 internal hold variable.

function name:

 HPWTGen2

file name:

 HPWTGen2.dsp

associated variables and functions:

 a_HPWTGen2/p_HPWTGen2 - parameters for high precision wavetable generator

 a_WTSine[129] - circular buffer of 128pt sine wave

 a_WTTri[129] - circular buffer of 128pt triangle wave

 a_WTSaw[129] - circular buffer of 128pt sawtooth wave

 a_WTSq[129] - circular buffer of 128pt square wave

 a_RandLUT[511] - circular buffer to array of noise

parameter definition:

	parameter
	description
	expected value

	
	
	

	HPWTGEN2_FREQMSW
	oscillator frequency most significant word
	0x0000-0x7fff

	HPWTGEN2_FREQLSW
	oscillator frequency least significant word
	0x0000-0xffff

	HPWTGEN2_PHASEMSW
	accumulated phase most significant word
	0x0000-0xffff

	HPWTGEN2_PHASELSW
	accumulated phase least significant word
	0x0000-0xffff

	HPWTGEN2_WTPTR
	pointer to circular wavetable
	(1)

(1) parameter should point to a 129 element circular wavetable (aligned on

 a 256 word boundary). SynDevKit provides a sine wave (a_WTSine),

 square wave (a_WTSq), triangle wave (a_WTTri), and sawtooth wave

 (a_WTSaw). also note that these parameters can point into the random

 array a_RandLUT, as it is properly aligned.

initialization example:

 /* init HPWTGen2 to create a 400.25Hz triangle wave */

 SETPTR(a_HPWTGen2);

 INIT_WTGEN2(400, 0x4000, ^a_WTTri);

retrigger initialization information:

 when retriggering HPWTGen2, it may be desirable to reset the phase to zero.

 if this is not done, an offset impulse at the start of the signal might be

 heard, depending on the phase and envelope type. the following macro is

 provided for this purpose:

 /* init phase of 2nd HPWTGen2 */

 RESET_PHASE_HPWTGEN(1);

 additionally, macros are provided for initing the frequency of the wavetable

 generator from a_CTRLData during retiggering. one of the macros only

 initializes the upper 16 bits of the oscillator frequency, while the other

 one uses two a_CTRLData arrays for initialization; one for the upper 16 bits

 of the oscillator frequency, and one for the lower 16 bits of the oscillator

 frequency.

 /* init 1st HPWTGen2 with freq from a_CTRLData+2, upper 16 MSW only */

 CTRLDATA_TO_HPWTGEN2_MSWFREQ(2, 0);

 /* init 2nd HPWTGen2 with freq from a_CTRLData+0 and a_CTRLData+3 */

 CTRLDATA_TO_HPWTGEN_FREQ(0, 3, 1);

misc information:

 HPWTGen2 is a high-precision wavetable generator, similar in operation to

 WTGen2. the big difference between the two generators is that HPWTGen2 uses

 a 16.16 fractional datatype for the input frequency, while WTGen2 uses a

 16.0 datatype for the input frequency. the 16 LSBs are represented by an

 unsigned 16 bit value. a simple command-line program is provided to help

 converting unsigned hex values into decimal values, and vice versa. the

 program is called formatconv.exe and is located in the .\tools directory.

 examples of how to use formatconv are given below:

 c:\>formatconv -f2h 0.1234

 fractional input: 0.123400

 hex output: 0x1f97

 c:\>formatconv -h2f 0x6521

 hex input: 0x6521

 fractional output: 0.395041

 this program is useful for generating exact hex values when a specific

 fractional frequency is desired.

 the reason to use WTGen/WTGen2 over HPWTGen2 is that HPWTGen2 takes more

 cycles to generate an output (30 (WTGen) & 20 (WTGen2) vs 34 cycles). the

 ability to specifically tune the output in HPWTGen2 is very useful for

 generating beat frequencies.

function name:

 KillTimeFX

file name:

 KillTime.dsp

associated variables and functions:

 a_KillTimeFX/p_KillTimeFX - parameters for killtime function

parameter definition:

	parameter
	description
	expected value

	
	
	

	KILLTIMEFX_CYCLES
	number of cycles to wait in loop
	0x0000-0x3fff

initialization example:

/*

 * create a wait loop for 100 cycles (technically it is 100 + setup time for

 * the loop, which is approximately 5 cycles)

 */

 SETPTR(a_KillTimeFX);

 INIT_KILLTIMEFX(100);

misc information:

 KillTime is typically used for generating odd effects caused by incomplete

 filling of the output buffer due to increasing the overall processing time.

 as this number gets bigger, the output slows down and clipping along with

 other harsh artifacts are introduced.

 this function is also useful for determining how many free cycles remain for

 undistorted audio processing.

function name:

 KSGen

file name:

 KSGen.dsp

associated variables and functions:

 a_KSGen/p_KSGen - parameters for KSGen

 a_KSBuff0[LENKSBUFF0] - circular buffer for KS synthesis

 a_KSBuff1[LENKSBUFF1] - circular buffer for KS synthesis

 a_KSBuff2[LENKSBUFF2] - circular buffer for KS synthesis

 a_KSBuff3[LENKSBUFF3] - circular buffer for KS synthesis

 a_KSBuff4[LENKSBUFF4] - circular buffer for KS synthesis

 a_KSBuff5[LENKSBUFF5] - circular buffer for KS synthesis

 a_KSBuff6[LENKSBUFF6] - circular buffer for KS synthesis

 a_KSBuff7[LENKSBUFF7] - circular buffer for KS synthesis

 a_MIDIFreqKS[128] - translation of MIDI frequencies to KS buffer lengths

 FillKS0Buff - function for re-initing KSBuff0

 FillKS1Buff - function for re-initing KSBuff1

 FillKS2Buff - function for re-initing KSBuff2

 FillKS3Buff - function for re-initing KSBuff3

 FillKS4Buff - function for re-initing KSBuff4

 FillKS5Buff - function for re-initing KSBuff5

 FillKS6Buff - function for re-initing KSBuff6

 FillKS7Buff - function for re-initing KSBuff7

parameter definition:

	parameter
	description
	expected value

	
	
	

	KSGEN_ADDSUB
	subtract or add samples
	0x0000-0x0001

	KSGEN_BUFFPTR
	pointer into KS buffer
	(1)

	KSGEN_FREQ
	length of delay line
	0x0001-LENKSBUFF0...7

	KSGEN_AVEFACSIGN
	probabilistic sign of averaging factor
	0xc000-0x4000

	KSGEN_AVEFAC
	averaging factor value
	0x0000-0x7fff

(1) KS buffer must be circular. this parameter should point to the head of this

 buffer. SynDevKit provides 8 KS buffers (named KSBuff0-KSBuff7) which are

 appropriate for KSGen.

initialization example:

 SETPTR(a_KSGen);

 INIT_KSGEN(1, ^a_KSBuff0, 0x100, 0x4000, 0x4000);

retrigger initialization information:

 when retriggering KSGen, the associated circular buffer of noise is

 typically refilled. InitFunc.dsp provides a function call to re-init

 KSBuff0-KSBuff7 with white noise (called FillKSxBuff, where x is the

 appropriate KSBuff). if another buffer is used or if the buffer needs to

 be filled with something other than white noise, a custom init function

 must be written.

 macros are provided for loading the KSGEN_FREQ parameter with data from

 a_CTRLData, interpretting a_CTRLData as a MIDI offset or an absolute

 length of the delay line:

 /* load 5th KSGen with delay line length from a_CTRLData+2 */

 CTRLDATA_TO_KSGEN_FREQ(2, 4);

 /* load 2nd KSGen with MIDI offset from a_CTRLData+3 */

 CTRLDATA_TO_KSGEN_FREQ_MF(3, 1);

misc information:

 the general formula for the output of this function is:

 output = (+/-)(ave factor)*(input(n) +/- input(n-1))

 the first +/- choice is controlled by a_KSGen[KSGEN_AVEFACSIGN] and is

 handled in a probabilistic fashion. 0xc000 would force a positive average

 factor or 0x4000 forces a negative factor. 0x0000 is an equal probability of

 pos or negative. values on the extremes sound like plucked strings and

 values near 0x0000 are good for drum synthesis. the ave factor is equal to

 a_KSGen[KSGEN_AVEFAC]. a value of 0x4000 leads to a long tone. values

 greater than 0x4000 can lead to saturation. while this distortion can be

 annoying for plucked strings, it is useful for drums.

 a_KSGen[KSGEN_ADDSUB] controls the sign of the second +/- - the one

 that is tied to the two inputs. adding is used for plucked strings and loud

 noises, subtracting is good for short drum sounds. adding works as a LPF

 and subtracting is a HPF. the buffer that holds the noise to be averaged

 must be circular. normally these point into one of the a_KSBuff arrays. the

 length of averaging delay line is controlled by KSGen[KSGEN_FREQ]. this

 value can be anywhere from 1 to the length of the KS buffer. the larger the

 value, the lower the frequency. the frequency is directly related to the buffer

 length. for instance, the frequency of a buffer with length 441 is

 44100/441 = 100Hz.

 when initing a KS generator (usually in the associated TrigInit function),

 call the FillKSxBuff function, where x is equal to the number of the

 associated KSBuff (ex: FillKS1Buff is the function for re-initing KSBuff1).

 in general, ProbKSGen is a better choice for a general purpose karplus

 strong generator. it has more control parameters and handles saturation

 properly. however, there may be instances where saturation is desired,

 especially when initializing parameters to generate drum sounds. in this

 case, try using KSGen rather than ProbKSGen.

function name:

 LFO3

file name:

 LFO3.dsp

associated variables and functions:

 a_LFO3/p_LFO3 - parameters for LFO memory modifier

 a_WTSine[129] - circular buffer of 128pt sine wave

 a_WTTri[129] - circular buffer of 128pt triangle wave

 a_WTSaw[129] - circular buffer of 128pt sawtooth wave

 a_WTSq[129] - circular buffer of 128pt square wave

 a_RandLUT[511] - circular buffer to array of noise

parameter definition:

	parameter
	description
	expected value

	
	
	

	LFO3_HOLDPER
	LFO hold period for sample/hold operation
	0x0001-0x7fff

	LFO3_CURRPER
	LFO hold period internal counter
	0x0001-0x7fff

	LFO3_FREQ
	LFO frequency (in 1/128 Hz increments)
	0x0000-0x7fff

	LFO3_PHASE
	LFO internal phase count
	0x0000-0x7fff

	LFO3_PTR
	pointer to base address of LFO wavetable
	(1)

	LFO3_MOD
	LFO modulation amount
	0x0000-0x7fff

	LFO3_BASE
	LFO modulation base value
	0x0000-0x7fff

	LFO3_ADDR
	LFO moduation target address
	(2)

(1) parameter should point to a 129 element circular wavetable (aligned on

 a 256 word boundary). SynDevKit provides a sine wave (a_WTSine),

 square wave (a_WTSq), triangle wave (a_WTTri), and sawtooth wave

 (a_WTSaw). also note that these parameters can point into the random

 array a_RandLUT, as it is properly aligned.

(2) this can point at any valid address to be modified.

initialization example:

/*

 * init LFO3 for 2.5Hz LFO rate (no sample & hold), squarewave LFO, 0x2000 +/-

 * 0x200, at address v_LFOTarget

 */

 SETPTR(a_LFO3);

 INIT_LFO3(1, 320, ^a_WTSq, 0x200, 0x2000, ^v_LFOTarget);

/*

 * init another LFO3 with the same parameters, but with a sample & hold

 * rate of 10 krates, a sine LFO, and target address of v_LFOTarget+1

 */

 INIT_LFO3(10, 320, ^a_WTSine, 0x200, 0x2000, ^v_LFOTarget+1);

retrigger initialization information:

 LFO3 does not need to be re-inited unless:

 * the target base value changes (ex: if the LFO is tied to the frequency

 of a signal generator, when a new frequency is calculated for this

 generator the LFO3 base value must be re-initialized)

 * the phase of the LFO is to be reset to 0. this is useful for keeping an LFO

 in better sync with the sequencer (because the LFO frequency may not

 divide evenly into the sequencer rate). to do this use the following

 macro:

 /* reset phase of 2nd LFO3 call */

 RESET_PHASE_LFO3(1);

misc information:

 LFO3 applies an LFO to the specified memory location. it will continue

 to apply this memory modification indefinitely. to effectively turn off

 the memory modifier, the LFO3 modification address can be set to ^v_Dummy.

 LFO3 is based off of the WTGen2 signal generator, but it is called at

 krate (control rate) rather than arate (audio rate). because the krate

 is set to 1/128 the audio rate, the frequencies provided in the

 a_LFO3[LFO_FREQ] parameter are 1/128 times slower than the actual rate.

 for instance, to create a 1Hz LFO, the frequency parameter should be set

 to 128. a 128Hz LFO would have a frequency equal to 128*128, or 16384

 (assuming the sample/hold parameter is set to 1).

 the proper number of LFO3 calls are automatically placed into the ModFuncs

 function via the function CalcLFO3Calls, which is called inside GenFXIni.

 this function inits the v_NumLFO3 variable with the number of LFO3 calls

 needed. inside ModFuncs there is a loop for calling LFO3 v_NumLFO3 times.

 this architecture has the disadvantage that only 1 LFO can be applied to

 a memory location, but it simplifies maintanence effort as new LFOs are

 added simply by initing a new instance in GenFXIni. therefore, making

 explicit called to LFO3 is not recommended for normal SynDevKit usage.

 LFO3 also has sample & hold (S/H) functionality, which allows the LFO to

 hold a particular value for a specific number of krates. to set the LFO for

 no S/H, set this parameter to 1. S/H is useful for syncing an LFO with the

 sequencer or for creating interesting sounds.

function name:

 MemEnv1

 MemEnv2

 MemEnv3

file name:

 MemEnv.dsp

associated variables and functions:

 a_MemEnv1/p_MemEnv1 - parameters for ADSR memory modifier

 a_MemEnv2/p_MemEnv2 - parameters for exponential decay memory modifier

 a_MemEnv3/p_MemEnv3 - parameters for AD memory modifier

parameter definition:

MemEnv1

	parameter
	description
	expected value

	
	
	

	ME1_CURRSCALE
	internal current envelope value
	0x0000-0x7fff

	ME1_STAGE
	MemEnv1 stage
	0x0000-0x0003

	ME1_ATTACKRATE
	MemEnv1 attack rate
	0x0000-0x7fff

	ME1_DECAYRATE
	MemEnv1 decay rate
	0x0000-0x7fff

	ME1_DECAYMIN
	MemEnv1 decay minimum
	0x0000-0x7fff

	ME1_SUSTAINLEN
	MemEnv1 sustain length
	0x0000-0x7fff

	ME1_SUSTAINCNT
	internal sustain count
	0x0000-0x7fff

	ME1_RELRATE
	MemEnv1 release rate
	0x0000-0x7fff

	ME1_SCALAR
	MemEnv1 scalar
	0x0000-0x7fff

	ME1_ADDR
	MemEnv1 target address
	(1)

(1) this can point at any valid modifyable address.

MemEnv2

	parameter
	description
	expected value

	
	
	

	ME2_CURRSCALE
	internal current scalar value
	0x0000-0x7fff

	ME2_ADDR
	MemEnv2 target address
	(1)

	ME2_MAXOUT
	MemEnv2 maximum output
	0x0000-x0x7fff

	ME2_MINOUT
	MemEnv2 minimum output
	0x0000-x0x7fff

	ME2_LIMIT0
	MemEnv2 min for control range 0
	0x0000-x0x7fff

	ME2_LIMIT1
	MemEnv2 min for control range 1
	0x0000-x0x7fff

	ME2_LIMIT2
	MemEnv2 min for control range 2
	0x0000-x0x7fff

	ME2_DRATE0
	MemEnv2 exponential decay hold time 0
	0x0001-0x7fff

	ME2_DRATECNTR0
	internal hold time counter
	0x0000-0x7fff

	ME2_SCALAR0
	MemEnv2 exponential decay constant 0
	0x0000-0x7fff

	ME2_DRATE1
	MemEnv2 exponential decay hold time 1
	0x0001-0x7fff

	ME2_DRATECNTR1
	internal hold time counter
	0x0000-0x7fff

	ME2_SCALAR1
	MemEnv2 exponential decay constant 1
	0x0000-0x7fff

	ME2_DRATE2
	MemEnv2 exponential decay hold time 2
	0x0001-0x7fff

	ME2_DRATECNTR2
	internal hold time counter
	0x0000-0x7fff

	ME2_SCALAR2
	MemEnv2 exponential decay constant 2
	0x0000-0x7fff

	ME2_DRATE3
	MemEnv2 exponential decay hold time 3
	0x0001-0x7fff

	ME2_DRATECNTR3
	internal hold time counter
	0x0000-0x7fff

	ME2_SCALAR3
	MemEnv2 exponential decay constant 3
	0x0000-0x7fff

(1) this can point at any valid modifyable address.

MemEnv3
	parameter
	description
	expected value

	
	
	

	ME3_STAGE
	internal current envelope value
	0x0000-0x7fff

	ME3_ADDR
	MemEnv3 target address
	(1)

	ME3_INTCNTR
	internal MemEnv3 stage
	0x0000-0x0001

	ME3_SA
	MemEnv3 start attack value
	0x0000-0x7fff

	ME3_EA
	MemEnv3 end attack value
	0x0000-0x7fff

	ME3_ATIME
	MemEnv3 krate tics from start to end attack
	0x0001-0x7fff

	ME3_ED
	MemEnv3 end decay value
	0x0000-0x7fff

	ME3_DTIME
	MemEnv3 krate tics from start to end decay
	0x0001-0x7fff

(1) this can point at any valid modifyable address.

initialization example:

/*

 * init MemEnv1 for 0x100 attack increment, 0x200 decay decrement,

 * sustain height of 0x2000, sustain period of 100 samples, release rate of

 * 0x4 and target address of v_ME1Target

 */

 SETPTR(a_MemEnv1);

 INIT_MEMENV1(0x0100, 0x0200, 0x2000, 100, 0x0004, ^v_ME1Target);

/*

 * init MemEnv2 for output range from 200 to 100, target address ^v_ME2Target

 * with the following characteristics in each stage of decay:

 *

 * stage 0: no decay hold, decay constant 0x7f00, decay range 0x7fff-0x5000

 * stage 1: decay hold 5, decay constant 0x7f40, decay range 0x4fff-0x4000

 * stage 2: decay hold 3, decay constant 0x7c00, decay range 0x3fff-0x1800

 * stage 3: no decay hold, decay constant 0x7f00, decay range 0x17ff-0x0000

 */

 SETPTR(a_MemEnv2);

 INIT_MEMENV2(^v_ME2Target, 200, 100, 0x5000, 0x4000, 0x1800, 1, 0x7f00, 5, 0x7f40, 3, 0x7c00, 1, 0x7f00);

/*

 * init MemEnv3 for starting attack of 100, end attack of 400, attack time of

 * 50 krate tics, end decay of 300, decay time of 700 tics and target address

 * of v_ME3Target.

 */

 SETPTR(a_MemEnv3);

 INIT_MEMENV3(^v_ME3Target, 100, 400, 50, 300, 700);

retrigger initialization information:

 to retrigger MemEnv1, the following memory locations must be inited to zero:

 a_MemEnv1 + ME1_CURRSCALE

 a_MemEnv1 + ME1_STAGE

 a_MemEnv1 + ME1_SUSTAINCNT

 this typically would happen in the appropriate TrigInit function that the

 MemEnv1 is tied to. the following macro is provided for this purpose:

 /* reset 1st MemEnv1 */

 RESET_MEMENV1(0);

 to retrigger MemEnv2, the following memory locations must be inited to zero:

 a_MemEnv2 + ME2_CURRSCALE

 a_MemEnv2 + ME2_DRATECNTR0

 a_MemEnv2 + ME2_DRATECNTR1

 a_MemEnv2 + ME2_DRATECNTR2

 a_MemEnv2 + ME2_DRATECNTR3

 this typically would happen in the appropriate TrigInit function that the

 MemEnv2 is tied to. the following macro is provided for this purpose:

 /* reset 4th MemEnv2 */

 RESET_MEMENV2(3);

 to retrigger MemEnv3, the following memory locations must be inited to zero:

 a_MemEnv3 + ME3_STAGE

 a_MemEnv3 + ME3_INTCNTR

 this typically would happen in the appropriate TrigInit function that the

 MemEnv3 is tied to. the following macro is provided for this purpose:

 /* reset 3rd MemEnv3 */

 RESET_MEMENV3(2);

misc information:

 all of the MemEnv functions apply a memory envelope to an arbitrary memory

 location. MemEnv1 applies an ADSR in a very similar fashion to ADSRPan,

 except that the update rate is hard-coded to the krate (because it is called in

 ModFuncs.dsp). MemEnv3 applies an AD envelope to a memory location. the

 big difference between how MemEnv1 and MemEnv3 work is that MemEnv3

 allows for directly setting to time period between the start and end attack and

 the start and end decay. this makes MemEnv3 easier to use and in general the

 perferred envelope function for simple memory envelopes. additionally,

 MemEnv3 allows for a non-zero starting value, while MemEnv1 always starts

 at zero.

 MemEnv2 is slightly more complicated than MemEnv1/3. it consists of four

 exponentially decaying waveforms, each of which have configurable hold

 times and decay amounts. since SynDevKit is based on fractional 1.15 math,

 repeatedly multiplying an input value by itself will cause it to decay to zero

 over time (because all 1.15 values are <1). therefore, the decay constant

 determines how quickly the envelope will decay. the smaller the scalar

 value, the faster the output will reach zero. the DRATE parameter controls

 how often the next exponential decay value is calculated. if the exponential

 decay value is to be calcualated every time MemEnv2 is called, make sure to

 set this paraeter to one. setting it to zero will cause improper behaviour.

 by including 4 independent exponential decay segments in MemEnv2, it is

 possible to have envelopes which quick change from decaying very quickly

 to decaying quite slowly. one classic example of where this is useful is in

 modifying the frequency of a sinewave in kickdrum generation. also note

 that if less than 4 segments of exponential decay are needed, the LIMIT

 parameters can be set to zero. this will cause the associated scalar and

 hold parameters to be never used.

 all MemEnv calls are directly hung into the ModFuncs function via the

 CalcMemEnvCalls function. this function calculates the number of MemEnv

 calls requested and places this value in v_NumMemEnv. this value is

 read in ModFuncs and is used to repeatedly call the appropriate MemEnv.

 direct calls to any of the MemEnv fucntions is not advised.

 MemEnv3 can also be used with the sequencer to allow for memory envelopes

 independent of a particular signal generator. to enable this operation,

 fill the SEQ2_ENVTYPE parameter with ME3ENV. the memory envelope will

 reset only if the TrigTrack associated with it causes it to retrigger.

 the VolTrack associated with that track is not used. MemEnv1 has not yet

 been added as a valid sequencer track and must be handled manually.

function name:

 MultiGen

file name:

 MultiGen.dsp

associated variables and functions:

 a_MultiGen/p_MultiGen - parameters for MultiGen

parameter definition:

	parameter
	description
	expected value

	
	
	

	param0
	number of generators to pass through envelope
	0x0000-(MULTGEN_VARS/2)

	param1
	pointer to first generator
	(1)

	param2
	first generator scaling amount
	0x0000-0x7fff

	param3
	pointer to second generator
	(1)

	param4
	second generator scaling amount
	0x0000-0x7fff

	etc
	etc
	etc

(1) must point to a valid SynDevKit generator

initialization example:

/*

 * init MultiGen to pass 2 generators through an envelope (KSGen and WTGen2,

 * with scalars of 0x5000 and 0x3000, respectively).

 */

 SETPTR(a_MultiGen);

 DM(I2, M1) = 2;

 DM(I2, M1) = ^KSGen;

 DM(I2, M1) = 0x5000;

 DM(I2, M1) = ^WTGen2;

 DM(I2, M1) = 0x3000;

misc information:

 MultiGen isn't a generator or FX function - instead it provides a simple

 codified method of passing multiple generators through a single envelope.

 each generator is called and the output is scaled by the value directly

 following the function pointer. after all generators are called, the output

 is placed into the location pointed to by I7 (the normal location where

 generators place their output).

 multiple MultiGen calls can be used in a single song. after the last scalar

 tied to the last function pointer of the previous MultiGen, the next

 parameter would be the number of generators to call in the next MultiGen

 function.

 to avoid saturation, the sum of the scalars used with a set of functions

 passed through a single envelope must be equal to or less than 0x8000.

 because the number of parameters passed to MultiGen is variable (dependent

 on the number of functions to be passed through a single envelope), an

 initialization macro for MultiGen does not exist. the SETPTR macro sets

 I2 to the start of the passed variable/array. therefore, I2 should be used

 in the initalization instructions of this function.

function name:

 OscCombGen

file name:

 OscComb.dsp

associated variables and functions:

 a_OscCombGen/p_OscCombGen - parameters for OscCombGen function

parameter definition:

	parameter
	description
	expected value

	
	
	

	OSCCOMBGEN_COMBTYPE
	oscillator combination type
	(1)

	OSCCOMBGEN_GEN0
	oscillator 0
	(2)

	OSCCOMBGEN_GEN1
	oscillator 1
	(2)

(1) must be set to one of the OSCCOMBGEN types defined in GenFX.h

(2) must not be greater than the number of generators in GenFX.dsp

initialization example:

/*

 * init OscCombGen for a multiplication oscillator combination of tracks 4

 * and 6

 */

 SETPTR(a_OscCombGen);

 INIT_OSCCOMBGEN(OSCCOMBGEN_MULT, 4, 6);

retrigger initialization information:

 there are no requirements for retriggering the oscillator combining

 generator.

misc information:

 OscCombGen is a generator that combines the output of two other tracks

 to create a new track. it reads its output from a_GenData, which is where

 the generators write their unscaled inputs into before they are passed

 through an envelope (ex: ADSRPanEnv). there are 9 different combinations

 supported in this version of SynDevKit, listed below:

 OSCCOMBGEN_XOR: bitwise-xor two generators

 OSCCOMBGEN_AND: bitwise-and two generators

 OSCCOMBGEN_OR: bitwise-or two generators

 OSCCOMBGEN_MULT: multiply two generators, keep upper 16 MSBs

 OSCCOMBGEN_LOFIMULT: multiply two generators, keep lower 16 MSBs

 OSCCOMBGEN_SUB: subtract two generators

 OSCCOMBGEN_ABSMULT: abs value of one generator multiplied by the other

 OSCCOMBGEN_BIGGER: pick the larger input of either generator as output

 OSCCOMBGEN_SMALLER: pick the smaller input of either generator as output

 additional OscComb types can be added to OscCombGen, by following the

 methodology given in the function. a new entry would be made in the jump

 table (OscCombJT), and the code used to read two oscillators would be

 copied, along with whatever additional code is required to perform the

 custom combination function. an entry in the #define table of OscCombGen

 types can also be added to simplify calling this new operator.

 it is important to note that OscCombGen processes generator data that has not

 been passed through any envelopes or scaling. generators typically

 continuously generate data - they are only muted if the associated envelope

 is set to zero (ie: end of release stage on ADSR) or if the mix scalar are set

 to zero (a_RMixScalars, a_LMixScalars). however, neither of these methods

 affect the inputs passed into OscCombGen. OscCombGen combines full-scale

 audio data and the envelope associated with OscCombGen controls the

 overall volume of the specific generator.

 also remember that, although this function operates on previously generated

 data, it is a generator and not a FX function. it must be placed

 immediately after a modify(I7, M7) function. also note that FX can be

 applied to this generator in the same fashion as any other generator.

function name:

 PerNoiseGen

file name:

 PerNoise.dsp

associated variables and functions:

 a_PerNoiseGen/p_PerNoiseGen - parameters for periodic noise generator

 a_PerNoiseGenParam[19] - "interesting" pernoise parameter values (typically

 written into a_PerNoise[PERNOISEGEN_LSWA])

parameter definition:

	parameter
	description
	expected value

	
	
	

	PERNOISEGEN_MSWSEED
	most significant word of seed
	0x0000-0xffff

	PERNOISEGEN_LSWSEED
	least significant word of seed
	0x0000-0xffff

	PERNOISEGEN_LSWA
	"a" parameter of linear congruence function
	0x0000-0xffff

initialization example:

/*

 * init periodic noise generator 0xc0de=MSW of seed, 0xd00d=LSW of seed,

 * 0x003f=LSW of A

 */

 SETPTR(a_PerNoise);

 INIT_PERNOISEGEN(0xc0de, 0xd00d, 0x003f);

retrigger initialization information:

 there are no requirements for retriggering the periodic noise generator.

misc information:

 a generalized implementation of the linear congruence method for generating

 random numbers is used in PerNoiseGen. the formula for this is:

 x(n+1) = (a*x(n)+c) mod m

 this is the same formula used to generate random numbers which are then

 fed into a_RandLUT before song execution begins.

 typically, a and c are defined such that a uniformally distributed set of

 random numbers are outputted from the function. however, in this case, it

 is possible to configure the LSW of a and x(n) such that pitched noises

 are output from the function (essentially the function does not generate

 a uniformally distributed number but instead is stuck outputting a small

 loop of numbers).

 as you could probably guess, it is difficult to determine the ouput of the

 periodic noise generator empirically. however, there are a few general

 rules that can be used to help generate "useful" sounds:

 * there appears to be 16 "modes" of operation for PerNoise as controlled

 by the lower 4 bits a_PerNoiseGen[PERNOISEGEN_LSWSEED]. what

 this means is that setting a_PerNoiseGen[PERNOISEGEN_LSWSEED] =

 0x0000 is roughly equivalent to 0x0010, 0x0020, etc.

 * feeding even numbers into a_PerNoiseGen[PERNOISEGEN_LSWA] leads

 to no output

 * feeding odd numbers that are a power of 2 +/- 1 (ex: 31, 33, 63, 65)

 seem to have the most interesting characteristics

function name:

 PrevCurrFiltFX

file name:

 PrevCurrFilt.dsp

associated variables and functions:

 a_PrevCurrFiltFX/p_PrevCurrFiltFX - parameters for PrevCurrFiltFX function

parameter definition:

	parameter
	description
	expected value

	
	
	

	PREVCURRFILTFX_PCFTYPE
	filter type
	(1)

	PREVCURRFILTFX_MAXDIFF
	max difference
	0x0000-0xffff

	PREVCURRFILTFX_PREVSAMP
	previous input
	0x0000-0xffff

(1) must be one of the PREVCURRFILTFX types defined in GenFX.h

initialization example:

/*

 * init PrevCurrFiltFX for filter type 0, and max difference of 0x0800.

 */

 SETPTR(a_PrevCurrFiltFX);

 INIT_PREVCURRFILTFX(PREVCURRFILTFX_0, 0x0800);

misc information:

 PrevCurrFiltFX performs filtering operations based on the current sample

 passed to the function and the previous sample passed to the function.

 the two examples attempt to perform a sort of low-pass filtering by not

 allowing the maximum difference between two samples to be greater than

 the max difference parameter. however, these function seem to have bugs

 in them which lead to unexpected outputs. particularly interesting outputs

 can be coaxed out of PrevCurrFiltFX if the max difference is controlled by

 an LFO/MemEnv and/or the max difference is made negative. additional

 PrevCurrFiltFX filter types can be added to PrevCurrFiltFX by adding entries

 into the jump table (PCF_JT) and adding #define values in GenFX.h to

 access these locations in the jump table.

function name:

 ProbKSGen

file name:

 ProbKSGen.dsp

associated variables and functions:

 a_ProbKSGen/p_ProbKSGen - parameters for ProbKSGen function

 a_KSBuff0[LENKSBUFF0] - circular buffer for KS synthesis

 a_KSBuff1[LENKSBUFF1] - circular buffer for KS synthesis

 a_KSBuff2[LENKSBUFF2] - circular buffer for KS synthesis

 a_KSBuff3[LENKSBUFF3] - circular buffer for KS synthesis

 a_KSBuff4[LENKSBUFF4] - circular buffer for KS synthesis

 a_KSBuff5[LENKSBUFF5] - circular buffer for KS synthesis

 a_KSBuff6[LENKSBUFF6] - circular buffer for KS synthesis

 a_KSBuff7[LENKSBUFF7] - circular buffer for KS synthesis

 a_MIDIFreqKS[128] - translation of MIDI frequencies to KS buffer lengths

 FillKS0Buff - function for re-initing KSBuff0

 FillKS1Buff - function for re-initing KSBuff1

 FillKS2Buff - function for re-initing KSBuff2

 FillKS3Buff - function for re-initing KSBuff3

 FillKS4Buff - function for re-initing KSBuff4

 FillKS5Buff - function for re-initing KSBuff5

 FillKS6Buff - function for re-initing KSBuff6

 FillKS7Buff - function for re-initing KSBuff7

parameter definition:

	parameter
	description
	expected value

	
	
	

	PROBKSGEN_FILTPROB
	filtering probability
	0x0000-0x7fff

	PROBKSGEN_ADDSUBPROB1
	add/subtrack probability
	0x0000-0x7fff

	PROBKSGEN_ADDSUBPROB2
	+/- averaging factor probability
	0x0000-0x7fff

	PROBKSGEN_AVEFAC
	averaging factor
	0x0000-0x7fff

	PROBKSGEN_FREQ
	averaging buffer length
	0x0001-LENKSBUFF0..7

	PROBKSGEN_BUFFPTR
	pointer to buffer
	(1)

(1) KS buffer must be circular. this parameter should point to the head of this

 buffer. SynDevKit provides 8 KS buffers (named KSBuff0-KSBuff7) which are

 appropriate for ProbKSGen.

initialization example:

/*

 * init ProbKSGen 25% filter rate (75% direct read from noise buffer), 100%

 * add samples, always positive averaging factor, 0x4000 averaging factor,

 * noise buffer length 0x100, noise buffer is a_KSBuff0.

 */

 SETPTR(a_ProbKSGen);

 INIT_PROBKSGEN(0x2000, 0x7fff, 0x7fff, 0x0100, ^a_KSBuff0);

retrigger initialization information:

 similar to KSGen, the associated circular buffer of noise for ProbKSGen is

 typically refilled. InitFunc.dsp provides a function call to re-init

 KSBuff0-KSBuff7 with white noise (FillKSxBuff, where x is the appropriate

 KSBuff). if another buffer is used or if the buffer needs to be filled with

 something other than white noise, a custom function must be written.

 macros are provided for loading the PROBKSGEN_FREQ parameter with

 data from a_CTRLData, interpretting a_CTRLData as a MIDI offset or an

 absolute length of the delay line:

 /* load 5th ProbKSGen with delay line length from a_CTRLData+2 */

 CTRLDATA_TO_PROBKSGEN_FREQ(2, 4);

 /* load 2nd ProbKSGen with MIDI offset from a_CTRLData+3 */

 CTRLDATA_TO_PROBKSGEN_FREQ_MF(3, 1);

misc information:

 ProbKSGen is a more generalized, optimized, and overflow-protected version

 of KSGen. the general formula for the output of this function is:

 output = (+/-)(avefactor)*((input(n) +/- input(n-1))

 PROBKSGEN_FILTPROB determines if output will come from this

 equation or directly from delay line. if taken from delay line it "slows" the

 output & transition from noise to a pitched signal. as this parameter

 increases, the probability that the noise buffer is processed increases.

 PROBKSGEN_ADDSUBPROB1 determines the sign of operation on two input

 samples (+=LPF, -=HPF). as this parameter increases, the probability that the

 samples are added increases. PROBKSGEN_ADDSUBPROB2 determines the

 sign of avefactor. this affects the timbre of the output. as this parameter

 increases, the probability the avefactor will be positive increases.

 PROBKSGEN_AVEFAC is the averaging factor value. the larger the value, the

 longer it takes for the noise buffer to dissipate. a value of 0x4000 is on

 the cusp of the buffer never disappearing (ie: if avefactor>0x4000 it will

 always outputs data). values <0x4000 can lead to the typical plucked string

 output. PROBKSGEN_FREQ set the length of delay line in samples. the

 longer the delay line, the deeper the pitch. a MIDI conversion table of delay

 line lengths to MIDI frequencies is stored in the a_MIDIFreqKS array.

 PROBKSGEN_BUFFPTR points into noise buffer. this buffer must be

 circular.

 in general this is a much more powerful and flexible KS generator than

 KSGen. however, there are still times when KSGen might be a better choice

 of signal generators, specifically when generating drum sounds. along with

 generating plucked strings, KS algorithms are good for creating snare drums.

 one feature that makes KSGen good for creating drum sounds is that

 saturation is not properly handled in that algorithm, leading to stronger

 transients. ProbKSGen does not overflow, which is very useful for creating

 drones where avefactor>0x4000. on KSGen setting avefactor>0x4000 can lead

 to a ticking sound due to the large transcients being introduced into the

 noise buffer (because the noies buffer overflows and a new spike is written

 to the output).

function name:

 ProbSynGen

file name:

 ProbSyn.dsp

associated variables and functions:

 a_ProbSynthGen/p_ProbSynthGen - parameters for probabilistic synthesizer

parameter definition:

	parameter
	description
	expected value

	
	
	

	PROBSYNTHGEN_RATE
	bit recalculation rate
	0x0001-0x7fff

	PROBSYNTHGEN_INTCOUNT
	internal counter
	0x0001-0x7fff

	PROBSYNTHGEN_VAL
	current output
	0x0000-0xffff

	PROBSYNTHGEN_PROB15
	probability bit 15 is set
	0-100

	PROBSYNTHGEN_PROB14
	probability bit 14 is set
	0-100

	PROBSYNTHGEN_PROB13
	probability bit 13 is set
	0-100

	PROBSYNTHGEN_PROB12
	probability bit 12 is set
	0-100

	PROBSYNTHGEN_PROB11
	probability bit 11 is set
	0-100

	PROBSYNTHGEN_PROB10
	probability bit 10 is set
	0-100

	PROBSYNTHGEN_PROB9
	probability bit 9 is set
	0-100

	PROBSYNTHGEN_PROB8
	probability bit 8 is set
	0-100

initialization example:

/*

 * every 30 samples update output, 50% prob of bits 15-8 set to 1, 50% set to.

 * 0. bits 0-7 are all zero.

 */

 SETPTR(a_ProbSynthGen);

 INIT_PROBSYNTHGEN(30, 50, 50, 50, 50, 50, 50, 50, 50);

retrigger initialization information:

 there are no requirements for retriggering the periodic noise generator.

misc information:

 the 8 MSBs are set/cleared in a probabilsitic fashion.

 a_ProbSynthGen[PROBSYNTHGEN_PROB15] determines the probability that bit

 15 will be a 0 or a 1, a_ProbSynthGen[PROBSYNTHGEN_PROB14] does

 the same for bit 14 and so on. the period determines how often the

 bits are updated. only 8 MSBs are used in this function - the LSBs are

 all set to zero. the range for each of the probabilisticly set parameters is

 between 0 (always set at 0) and 100 (always set at 1).

 this function is useful for generating pitched noises and squarewave-ish sounds.

function name:

 ReadLeftInput

 ReadRightInput

 ReadBothMixedInputs

file name:

 ReadAudioIn.dsp

associated variables and functions:

 a_ LOutAudioInBuff/p_ LOutAudioInBuff - left channel audio input

 a_ ROutAudioInBuff/p_ ROutAudioInBuff - right channel audio input

parameter definition:

	parameter
	description
	expected value

initialization example:

 no initialization is necessary

misc information:

 these function read data from the stereo ADC channel and provide it as an

 audio input. they read data from the a_LAudioInBuff/ a_RAudioInBuff
 buffers, which are filled in the audio ISRs. if multiple tracks are to

 include audio from the input, CopiedGen should be used to pass the input

 audio data from track to track. the input audio pointers are incremented

 automatically inside these functions.
function name:

 RectifyFX

file name:

 Rectify.dsp

associated variables and functions:

 a_RectifyFX/p_RectifyFX - parameters for Rectify function

parameter definition:

	parameter
	description
	expected value

	
	
	

	RECTIFYFX_REC
	positive or negative rectify
	(1)

(1) must be set to POS_RECTIFY or NEG_RECTIFY

initialization example:

/*

 * init Rectify for a negative rectify

 */

 SETPTR(a_RectifyFX);

 INIT_RECTIFYFX(NEG_RECTIFY);

misc information:

 applies a positive or negative rectification to the input signal. if a

 positive rectify is selected, the input signal is forced to always be > 0,

 and if a negative rectify is selected, the input signal is forced to always

 be < 0.

function name:

 RotSynthGen

file name:

 RotSynth.dsp

associated variables and functions:

 a_RotSynthGen/p_RotSynthGen - parameters for RotSynth

parameter definition:

	parameter
	description
	expected value

	
	
	

	ROTSYNTHGEN_COUNT
	samples between data rotates
	0x0001-0x7fff

	ROTSYNTHGEN_INTCOUNT
	internal counter
	0x0001-0x7fff

	ROTSYNTHGEN_ROTDIST
	rotation amount
	0x0001-0x000f

	ROTSYNTHGEN_VAL
	value to rotate
	0x0000-0xffff

initialization example:

/*

 * init RotSynth for period of 10, rotation distance of 1,

 * and 0xdead as rotation seed

 */

 SETPTR(a_RotSynthGen);

 INIT_ROTSYNTHGEN(10, 1, 0xdead);

retrigger initialization information:

 typically a_RotSynthGen[ROTSYNTHGEN_VAL] is refilled with a new

 value - either selected from the random number buffer or a value to produce

 the desired timbre. the following macro allows for easy re-initing of the

 RotSynthGen with a new random value:

 /* load 4th RotSynthGen with new random value */

 NEW_RANDVAL_ROTSYNTHGEN(3);

misc information:

 in its simplest form (feed 0x0001 into the rot seed, ROTDIST=1), the output

 is like an exponential ramping up with a big discontinuity when the output

 is equal to 0x8000 - this is fullscale negative. the fourier series for

 this waveform is:

 harm mag ang

 0 0.000045 3.141593

 1 1.000000 2.501551

 2 1.520322 -3.033799

 3 1.746238 -2.426226

 4 1.851327 -1.892540

 5 1.904798 -1.397241

 6 1.933131 -0.922600

 7 1.947196 -0.458903

 8 1.951471 -0.000001

 thanks to noah for the analysis here.

 as more complex values are fed into the rotation register, the output adds

 overlayed delayed versions of this waveform. generally speaking it sounds

 like a squarewaveish thing, with widely varying timbres when re-inited with

 different random numbers. it can also have a fundamental freq which is

 much higher than the rotation period because it may take fewer than 16

 rotations to return to the same base value.

 the ROTSYNTHGEN_ROTDIST parameter determines the number of bits the data

 is rotated. if the data is rotated by an odd value, it will have the lowest

 possible pitch but will have a different harmonic series for each option.

 rotating by an even value leads to higher pitched outputs (because it will

 not rotate through all 16 values).

function name:

 Seq2

file name:

 Seq2.dsp

associated variables and functions:

 a_Seq2/p_Seq2 - parameters for sequencer

 a_TrigTrack00[128]...a_TrigTrack31[128] - sequencer trigger arrays

 a_VolTrack00[128]...a_VolTrack31[128] - sequencer volume arrays

 ap_CTRLTrack00[3]...ap_CTRLTrack31[3] - array of ptrs to control data

 a_CTRLTrack00_0...a_CTRLTrack31_0 - arrays of control data, parameter 0

 to...

 a_CTRLTrack00_7...a_CTRLTrack31_7 - arrays of control data, parameter 7

 a_CTRLData[8]/p_CTRLData - array of valid control data passed to TrigInit

parameter definition:

	parameter
	description
	expected value

	
	
	

	a_Seq2[0]
	number of audio tracks
	(1)

	1+SEQ2_TRIGCNT
	internal trigger counter
	0x0001-0x7fff

	1+SEQ2_TRIGRATE
	sequencer trigger rate
	0x0001-0x7fff

	1+SEQ2_BASETRIGRATE
	base trigger rate
	0x0001-0x7fff

	1+SEQ2_SWINGPER
	number sequencer steps in swing
	0x0001-0x7fff

	1+SEQ2_SWINGCNT
	internal swing counter
	0x0001-0x7fff

	1+SEQ2_SWINGAMOUNT
	sequencer trigger rate +/- amount
	0x0001-0x7fff

	1+SEQ2_SEQLEN
	sequence length
	0x0001-LENTRACK

	1+SEQ2_BASETRIGPTR
	base of sequencer trigger array
	(2)

	1+SEQ2_CURRTRIGPTR
	current pointer in trigger array
	(2)

	1+SEQ2_VOLPTR
	pointer into volume array
	(3)

	1+SEQ2_CTRLTRACKPTR
	pointer into control track array of pointers
	(4)

	1+SEQ2_INITFUNC
	pointer to retriggering function
	(5)

	1+SEQ2_ENVTYPE
	envelope type
	(6)

	1+SEQ2_ENVNUM
	envelope number
	(7)

	1+SEQ2_AUXFUNC
	pointer to auxilliary retrigger function
	(5)

(1) automatically initialized in GenFXIni.dsp. range is 1-32.

(2) must be circular buffer. a_Seq2 automatically initializes these to

 ^a_TrigTrack00-^a_TrigTrack31.

(3) must be circular buffer. a_Seq2 automatically initializes these to

 ^a_VolTrack00-^a_VolTrack31.

(4) automatically initialized to ^ap_CTRLTrack00-^ap_CTRLTrack31

(5) function normally placed in TrigInit.dsp

(6) must be one of the envelope types defined in GenFX.h (ex EXPDECAYENV)

(7) automatically set by GenFXIni.dsp

initialization example:

/*

 * init two sequencer tracks with the following characteristics:

 *

 * track0:

 * - trigger rate of 200 krates/tics

 * - no swing

 * - 32 tics in a sequence loop

 * - 2 control tracks tied to loop with the following characterics with

 * data stored in ap_CTRLTrack00

 * - control data held in a_CTRLTrack00_0 and a_CTRLTrack00_1

 * - a_CTRLTrack00_0 has length 32, a_CTRLTrack00_1 has length 24

 * - TrigInit function called InitBD0

 * - ADSR envelope type

 * - no auxilliary function call

 * - always trigger at step 0 and step 12, volume is 0x2000 and 0x1000

 *

 * track1:

 * - base trigger rate of 100 krates/tics

 * - swing period of 8 krates, swing of +/- 10 krates

 * - 48 tics in a sequence loop

 * - no control tracks tied to loop

 * - TrigInit function called InitKS0

 * - exponential decay envelope type

 * - no auxilliary function call

 * - 40% trigger at step 4 and step 20, volume is 0x3000 and 0x2000

 */

 /* init TrigTrack and VolTrack for each track */

 AR = 100;

 DM(a_TrigTrack00+0) = AR;

 DM(a_TrigTrack00+12) = AR;

 AR = 0x2000;

 DM(a_VolTrack00+0) = AR;

 AR = 0x1000;

 DM(a_VolTrack00+12) = AR;

 AR = 40;

 DM(a_TrigTrack01+4) = AR;

 DM(a_TrigTrack01+20) = AR;

 AR = 0x3000;

 DM(a_VolTrack01+4) = AR;

 AR = 0x2000;

 DM(a_VolTrack01+20) = AR;

 /* init control track */

 SETPTR(ap_CTRLTrack00);

 NUMCTRLTRACKS(2);

 INIT_AP_CTRLTRACK(LENCTRLTRACK00_0, ^a_CTRLTrack00_0);

 INIT_AP_CTRLTRACK(LENCTRLTRACK00_1, ^a_CTRLTrack00_1);

 /* init sequencer */

 SETPTR(a_Seq2);

 modify(I2, M1); /* do not init # tracks */

 INIT_SEQ2(200, 0, 0, 32, ^InitBD0, ADSRENV, ^DummyRet);

 INIT_SEQ2(100, 10, 8, 48, ^InitKS0, EXPDECAYENV, ^DummyRet);

misc information:

 Seq2 behaves like a standard step sequencer, but has a few novel features.

 one feature is that the decision to retrigger a signal generator is a

 probabilistic operation, with the probability set between 0-100 in the

 a_TrigTrack arrays. for instance, setting a_TrigTrack00[0] to 50 would

 mean there is a 50% chance that a new hit would be registered and a 50%

 chance that a new hit will not register for the first ‘tic’ in the sequence.

 a number of automatic initialization happen inside GenFXIni.dsp. these

 include:

 * init trigger pointer to point to a_TrigTrack arrays

 * init volume pointer to point to a_VolTrack arrays

 * init control track pointer to point to a_CTRLTrack arrays

 * init ap_CTRLTrack arrays with default data (no control data)

 * init SEQ2_ENVNUM using SEQ2_ENVTYPE analysis

 * clear all a_TrigTrack and a_VolTrack arrays

 a_TrigTrack and a_VolTrack must be circular buffers. keep in mind that one

 large circular buffer can be cut into a series of smaller circular buffers.

 for instance, a 128 element circular buffer can also become 2 64 element

 circular buffers (0-63 and 64-127) or 4 32 element circular buffers (0-31,

 32-63, 64-95, 96-127), etc etc. also, a 128 element circular buffer can

 be made circular for any value between 1 and 128. therefore, all lengths

 less than the declared length of the buffer are valid.

 a_VolTrack controls the volume of a particular hit. for instance,

 a_VolTrack00[0] controls the volume of a_TrigTrack00[0]. the value in

 a_VolTrack00[0] is automatically loaded into the scalar parameter for the

 appropriate envelope (as specified by the SEQ2_ENVTYPE parameter). if a

 hit does not trigger, the value in a_VolTrack is not loaded into the scalar

 parameter for the appropriate envelope.

 the control track provides a simple mechanism for providing control data

 to a particular track. this can be used for any purpose, such as setting new

 frequencies on each hit or modifications of LFOs or memory envelopes. the

 control track parameter passed into a_Seq2 supports up to 8 pointers and

 the lengths of these arrays. typically the length of the control track arrays

 would be equal to the length of the sequencer track, but it can be made to

 any length to allow for control parameters that go out of phase with the

 sequencer hits. the buffers of control data must be declared circular.

 the data read from the control tracks is placed into the a_CTRLData buffer

 and is normally accessed from within the appropriate TrigInit function.

 for example, if a_CTRLTrack00_0 contains frequency data for a WTGen2

 generator, the initialization function for that signal generator might look

 like:

InitWTG0:

 RESET_PHASE_WTGEN2(0);

 CTRLDATA_TO_WTGEN2_FREQ(0, 0);

 rts;

 after Seq2 is initialized, a function called Seq2PostProc must be called.

 this function performs the following operations:

 a) set the number of tracks parameter to number of macro calls

 b) set the envelope numbers for each track - typically only needed inside

 Seq2

 additionally, a_Seq2 is analyzed and envelope functions are automatically

 written starting at the global label ^Env (inside GenFX). this is done

 by analyzing the envelope types in a_Seq2 and writing the appropriate opcode

 to PM for this function call. the function which performs this operation is

 callled InitEnvCalls.

 Seq2 must be called from the ModFuncs function, and is executed at krate.

 it must be used for sequencing purposes, as some of the the parameters

 created in a_Seq2 are used in handling system buffers.

 Seq2 can handle up to MAXTRACKS number of tracks. currently this value is

 set at 32, though there is no inherent reason why this number cannot be

 made any arbritrary size. if this value is increased, additional rts

 instructions must be put at ^Env to serve as placeholders for InitEnvCalls.

 the TrigTrack, VolTrack, and CTRLTrack arrays are automatically written into

 a_Seq2 in InitFunc.

 the SongCTRL function uses the variable v_TicsPerMeasure to determine the

 number of tics between measures (which determines how quickly the Measure_JT

 jump table is traversed). v_TicsPerMeasure should be set in GenFXIni after

 the initialization of Seq2 occurs with one of the following macros:

 SEQ2_SET_MEASURE(num);

 or

 SET_TICS_PER_MEASURE(num);

 SEQ2_SET_MEASURE(num) sets the length of a measure to the time it takes the

 sequencer to cycle all the way through one track, where the track selected

 is based on the 'num' value (with the 1st track being selected with

 SEQ2_SET_MEASURE(0), etc etc). SET_TICS_PER_MEASURE(num) sets

 v_TicsPerMeasure to a specific value, where 'num' is that value.

function name:

 SVFFX

file name:

 SVF.dsp

associated variables and functions:

 a_SVFFX/p_SVFFX - parameters for state variable filter

 a_SVFFiltOut/p_SVFFiltOut - outputs of state variable filter

parameter definition:

	parameter
	description
	expected value

	
	
	

	SVFFX_K2
	filter resonance control
	0x0000-0x7fff

	SVFFX_K3
	filter cutoff frequency
	0x0000-0x7fff

	SVFFX_K4
	filter cutoff frequency
	0x0000-0x7fff

	SVFFX_TYPE
	filter type
	(1)

(1) must be set to one of 4 filter types (SVFFX_BANDOUT, SVFFX_LOWOUT,

 SVFFX_HIGHOUT, SVFFX_NOTCHOUT)

initialization example:

/*

 * init SVF coefficients for a lowpass filter with a cutoff of 0x0400,

 * resonance 0x1000.

 */

 SETPTR(a_SVFFX);

 INIT_SVFFX(0x1000, 0x0400, 0x0400, SVF_LOWOUT);

misc information:

 this is an implementation of a standard 6dB/octave state variable filter.

 the formula that govern its output are:

 HIGHOUT = input - K2*BANDOUT + LOWOUT;

 BANDOUT = BANDOUT + K3*HIGHOUT;

 LOWOUT = LOWOUT - K4*BANDOUT;

 NOTCHOUT = (HIGHOUT+LOWOUT)/2;

 K2 controls the resonance, or Q, of the filter output. K3 and K4 set the

 frequency range which is filtered. typically K3 and K4 are the same value,

 though it is possible to modify each of these independently. resonance is

 increased as K2 is increased, and the cutoff frequency increases as K3 and

 K4 increase.

function name:

 TunedRotSynthGen

file name:

 TunedRotSynth.dsp

associated variables and functions:

 a_TunedRotSynthGen/p_TunedRotSynthGen - parameters for TunedRotSynth

 a_MIDIFreq[128] - array of MIDI frequencies

parameter definition:

	parameter
	description
	expected value

	
	
	

	TUNEDROTSYNTHGEN_COUNT
	samples between data rotates
	0x0001-0x7fff

	TUNEDROTSYNTHGEN_INTCOUNT
	internal rotation counter
	0x0001-0x7fff

	TUNEDROTSYNTHGEN_ROTDIST
	rotation amount
	0x0001-0x000f

	TUNEDROTSYNTHGEN_VAL
	value to rotate
	0x0000-0xffff

	TUNEDROTSYNTHGEN_SAMPS
	samples left before full rotation
	0x0001-0xffff

	TUNEDROTSYNTHGEN_ROTLEFT
	rotations left before full rotation
	0x0001-0x000f

	TUNEDROTSYNTHGEN_FREQ
	TunedRotSynthGen frequency
	0x0001-0x0AC4

initialization example:

 /* set TunedRotSynth rotation distance 1, 0xdead rotation seed, 200Hz */

 SETPTR(a_TunedRotSynthGen);

 INIT_TUNEDROTSYNTHGEN(1, 0xdead, 200);

retrigger initialization information:

 two macros are provided for initialization of TunedRotSynthGen - one for

 loading a new random value into the rotation seed, and another for setting

 the frequency of the output signal.

 /* load 4th TunedRotSynthGen with new random value */

 NEW_RANDVAL_TUNEDROTSYNTHGEN(3);

 /* set freq of 2nd TunedRotSynthGen from 4th control track */

 CTRLDATA_TO_TUNEDROTSYNTHGEN_FREQ(3, 1);

misc information:

 TunedRotSynthGen is similar to RotSynthGen. both signal generators create

 an output by rotating a value. the difference between the two generators is

 that TunedRotSynthGen takes a frequency value as an input while RotSynthGen

 takes the period between rotations as an input. TunedRotSynthGen uses

 division to calculate the number of samples between rotations. the

 algorithm is crude - tuning is far from perfect. also, frequencies greater

 than 44100/16 (2756Hz) are not handled properly at all. this is due to

 the period-calculation algorithm not taking into consideration the remainder

 in the divide operation. TunedRotSynthGen is much more accurate (though

 still not very) when working with lower frequency values.

 TunedRotSynthGen is also more computationally expensive than RotSynthGen,

 especially when TunedRotSynthGen must calculate a new period or every time

 it shifts a value. however, if the frequency is low, these divisions

 occur infrequently and the division penalty is averaged out over number of samples.

function name:

 WaveShapeFX

file name:

 WaveShape.dsp

associated variables and functions:

 a_WaveShapeFX/p_WaveShapeFX - parameters for waveshaper

parameter definition:

	parameter
	description
	expected value

	
	
	

	WAVESHAPEFX_CONTINUITY
	dis/continuous waveshaper curve
	(1)

	WAVESHAPEFX_CUTOFF
	cutoff between curve0 and curve1
	0x0000-0x7fff

	WAVESHAPEFX_MSWSCALE0
	MSW slope (0 to cutoff input)
	0x0000-0x7fff

	WAVESHAPEFX_MSWSCALE1
	LSW slope (0 to cutoff input)
	0x0000-0xffff

	WAVESHAPEFX_LSWSCALE0
	MSW slope cutoff input to 0x7fff)
	0x0000-0x7fff

	WAVESHAPEFX_LSWSCALE1
	LSW slope cutoff input to 0x7fff)
	0x0000-0xffff

(1) must be set to WAVESHAPEFX_CONTINUOUS or

 WAVESHAPEFX_DISCONTINUOUS

initialization example:

/*

 * apply continuous waveshaper with slope of 0.5 when input is below 0x5000

 * and 1.25 above 0x5000

 */

 SETPTR(a_WaveShapeFX);

 INIT_WAVESHAPEFX(WAVESHAPEFX_CONTINUOUS, 0x5000, 0x0000, 0x8000, 0x1000,

 0x4000);

misc information:

 WaveShapeFX maps input samples to a new output value, based upon the slopes

 provided by the SCALE1 and SCALE0 parameters. WaveShapeFX uses a 32-bit

 scalar value, in 16.16 fractional format. therefore, the LSW is an unsigned value.

 this is different from the typical datatype used in SynDevKit, which is 1.15

 signed fractional format.

 a command-line program is provided to help generate hex values based on

 fractional inputs and vice versa. the program is called formatconv.exe and

 is located in the tools directory. examples of executing formatconv are

 given below:

 c:\>formatconv -f2h 0.1234

 fractional input: 0.123400

 hex output: 0x1f97

 c:\>formatconv -h2f 0x6521

 hex input: 0x6521

 fractional output: 0.395041

 the first two scalar values in the waveshaper parameter list determine the

 slope of the output up to the cutoff value. therefore, if the cutoff is

 set to 0x4000 and the scalar is set to 1.5, an input value of 0x4000 leads

 to an output value of 0x6000. the waveshaper supports saturation; therefore

 if the scalar causes the input to pass beyond full-scale (0x7fff for

 positive inputs, 0x8000 for negaitve inputs) the output will be clamped

 at full-scale positive or negative, as appropriate. the second two scalar

 values determine the slope of the output beyond the cutoff value up to

 full-scale.

 the WAVESHAPEFX_CONTINUITY parameter determines if the waveshaper is forced

 to have a continuous input/output curve. if WAVESHAPEFX_CONTINUOUS is

 passed in the waveshaper parameter list, the input/output curve is

 continuous. this means that the slope of the second scalar is only applied

 to the difference between the input value and the cutoff value. for

 instance, if the first scalar slope is 1.25, cutoff is 0x4000, second slope

 is 0.75, and the input sample is 0x7000, the output would be:

 (0x4000*1.25) + ((0x7000-0x4000)*0.75) = 0x5000 + 0x2400 = 0x7400

 if the WAVESHAPEFX_CONTINUITY parameter is set to

 WAVESHAPEFX_DISCONTINUOUS, the output above the cutoff is not affected

 by slope of the first scalar. therefore, the output in this case would be:

 0x7000*0.75 = 0x5400

 the discontinuous mode of WaveShapeFX can lead to a jump between the output

 just less than the cutoff value and the output just greater than the cutoff

 value. for normal compression/expansion functionality, WaveShapeFX should be

 configured for WAVESHAPEFX_CONTINUOUS operation.

 WAVESHAPEFX_DISCONTINUOUS is more approrpiate for unconventional

 distorted outputs.

function name:

 WTGen

 WTGen2

file name:

 WTGen.dsp

 WTGen2.dsp

associated variables and functions:

 a_WTGen/p_WTGen - parameters for wavetable generator

 a_WTGen2/p_WTGen2 - parameters for speedy wavetable generator

 a_WTSine[129] - circular buffer of 128pt sine wave

 a_WTTri[129] - circular buffer of 128pt triangle wave

 a_WTSaw[129] - circular buffer of 128pt sawtooth wave

 a_WTSq[129] - circular buffer of 128pt square wave

 a_RandLUT[511] - circular buffer to array of noise

 a_MIDIFreq[128] - array of MIDI frequencies

parameter definition:

WTGen

	parameter
	description
	expected value

	
	
	

	WTGEN_PHASE
	accumulated phase
	0x0000-0xffff

	WTGEN_FREQ
	frequency
	0x0000-0x7fff

	WTGEN_WTPTR
	pointer to circular wavetable
	(1)

(1) parameter should point to a 129 element circular wavetable (aligned on

 a 256 word boundary). SynDevKit provides a sine wave (a_WTSine),

 square wave (a_WTSq), triangle wave (a_WTTri), and sawtooth wave

 (a_WTSaw). also note that these parameters can point into the random

 array a_RandLUT, as it is properly aligned.

WTGen2

	parameter
	description
	expected value

	
	
	

	WTGEN2_FREQ
	frequency
	0x0000-0x7fff

	WTGEN2_PHASE
	accumulated phase
	0x0000-0xffff

	WTGEN2_WTPTR
	pointer to circular wavetable
	(1)

(1) parameter should point to a 129 element circular wavetable (aligned on

 a 256 word boundary). SynDevKit provides a sine wave (a_WTSine),

 square wave (a_WTSq), triangle wave (a_WTTri), and sawtooth wave

 (a_WTSaw). also note that these parameters can point into the random

 array a_RandLUT, as it is properly aligned.

initialization example:

 /* init WTGen to create a 100Hz sine wave */

 SETPTR(a_WTGen);

 INIT_WTGEN(100, ^a_WTSine);

 /* init WTGen2 to create a 500Hz triangle wave */

 SETPTR(a_WTGen2);

 INIT_WTGEN2(500, ^a_WTTri);

retrigger initialization information:

 when retriggering either WTGen or WTGen2, it may be desirable to reset the

 phase (either WTGen[WTGEN_PHASE] or WTGen2[WTGEN2_PHASE]) to

 zero. if this is not done, an offset impulse at the start of the signal might be

 heard, depending on the phase and envelope type. the following macros are

 provided for this purpose:

 /* init phase of 2nd WTGen */

 RESET_PHASE_WTGEN(1);

 /* init phase of 3rd WTGen2 */

 RESET_PHASE_WTGEN2(2);

 additionally, macros are provided for initing the frequency of either

 wavetable generator from a_CTRLData during retiggering. macros are provided

 for either an absolute frequency or a MIDI note frequency:

 /* init 1st WTGen with absolute freq from a_CTRLData+2 */

 CTRLDATA_TO_WTGEN_FREQ(2, 0);

 /* init 2nd WTGen with MIDI freq from a_CTRLData+0 */

 CTRLDATA_TO_WTGEN_FREQ_MF(0, 1);

 /* init 3rd WTGen2 with absolute freq from a_CTRLData+4 */

 CTRLDATA_TO_WTGEN2_FREQ(4, 2);

 /* init 4th WTGen with MIDI freq from a_CTRLData+1 */

 CTRLDATA_TO_WTGEN2_FREQ_MF(1, 3);

misc information:

 WTGen and WTGen2 are essentially the same algorithm, except that WTGen2 is

 33% more efficient, but doesn't handle negative frequencies in the same

 way. WTGen wraps samples back around within the wavetable while WTGen2

 reads outside the wavetable.

 WTGen2 does not require its buffers to be circular, but it must take into

 consideration the case where the last element of the wavetable is read and

 make WT[128]=WT[0]. this is handled in the DSP initialization functions.

 both functions require that their wavetable buffer be circular on a 256-pt boundary.

 both WTGen and WTGen2 use linear interpolation to dynamically create an

 output based on an input frequency and current state.

 it is possible to create custom wavetable buffers for these generators.

 one use for this would be to add PWM to the square wave without corrupting

 a_WTSq for use by other generators or LFOs.

function name:

 WTGenSyncFX

file name:

 WTGenSync.dsp

associated variables and functions:

 a_WTGenSyncFX/p_WTGenSyncFX - parameters for WTGenSyncFX function

parameter definition:

	parameter
	description
	expected value

	
	
	

	WTGENSYNCFX_WTADDR
	wavetable generator parameter pointer
	(1)

	WTGENSYNCFX_OSCNUM0
	number of generator whose phase is reset
	(2)

	WTGENSYNCFX_OSCNUM1
	number of generator who sets reset rate
	(2)

	WTGENSYNCFX_OSCPHASE
	internal phase state
	0x0000-0xffff

(1) must be equal to ^a_WTGen or a_WTGen2

(2) must be between 0 and the number of wavetable generators used in song

initialization example:

/*

 * init WTGenSyncFX to sync 3rd WTGen2 oscillator to the 5th WTGen oscillator

 */

 SETPTR(a_WTGenSyncFX);

 INIT_WTGENSYNCFX(^a_WTGen2, 2, 4);

misc information:

 a_WTGenSyncFX syncs two oscillators by resetting the phase of one oscillator

 once the other one has passed through an entire cycle. the first oscillator

 specified in the parameter list is the one whose phase is continually reset,

 while the second oscillator specified determines when the 1st oscillator's

 phase is reset. the two oscillators must be of the same type (WTGen or

 WTGen2). no other oscillator synchronization is provided by this function.

 the two oscillators can be at any frequency (typically oscillator 1 is at

 a lower frequency than oscillator 2, but interesting effects are possible if

 the opposite is true). the call to WTGenSyncFX can be placed anywhere in

 GenFX.dsp - it does not need to immediately follow either wavetable

 generator call.

function name:

 ZeroSampsFX

file name:

 ZeroSamps.dsp

associated variables and functions:

 a_ZeroSampsFX/p_ZeroSampsFX - parameters for ZeroSamps function

parameter definition:

	parameter
	description
	expected value

	
	
	

	ZEROSAMPSFX_PROB
	zeroing probability factor
	0x0000-0x7fff

initialization example:

/*

 * init ZeroSamps for a zeroing probability of 0x1000 (12.5%)

 */

 SETPTR(a_ZeroSampsFX);

 INIT_ZEROSAMPSFX(0x1000);

misc information:

 ZeroSampsFX selectively zeroes out its input, based on the probability

 factor. a probability factor of 0x0000 will never zero the output, while

 a probability factor of 0x7fff will always zero the output. setting this

 factory between these two values will change the probability that the

 output will be zeroed out. for example, setting the probability factor to

 0x4000 leads to a 50% chance that the output will be zero, and 50% chance

 that the output will be unaffected.

SynDevKit Mixers

 SynDevKit provides basic mixing functionality for adding all audio tracks

 and writing the output to the output buffers. however, SyDevKit was

 written to support custom mixing functions. for instance, it may be desireable

 to feed the output of one of the signal generators into the input of another

 generator. another possibility would be to do submixes on sets of tracks,

 such that FX could then be applied to specific portions of the output.

 the basic mixer used in SynDevKit is explained below.

function name:

 LBasicMix

 RBasicMix

file name:

 Mixer.dsp

associated variables and functions:

 none

parameter definition:

 none

initialization example:

 not applicable

misc information:

 LBasicMix and RBasicMix are two functions provided to perform the simplest

 mixing operation on the output from all audio tracks. each function sums

 the data in the a_LSampOut/a_RSampOut arrays, multiplying each value by the

 appropriate a_LMixScalars/a_RMixScalars amount. the call to these functions

 is made in GenFX.dsp, as shown in the template project. the output of these

 functions is written to v_LChanOut and v_RChanOut, and I7 is made to point

 to this memory location. if a custom mixing function is written, it should

 also write the output to these memory locations and have I7 point to them,

 to allow for global track processing and to properly handle the final write

 of the accumulated track data to the output buffers.

 other possibilities for mixing functions include custom submixes along with

 application of FX on these groupings of channels, or analysis/feedback of

 track output into audio generation parameters.

Miscellaneous SynDevKit Macros

 along with the macros listed above which are used for initialization of

 generators, fx, and envelopes, additional macros are provided for general

 SynDevKit control. keep in mind that macros trash register values. in

 general it is a good idea to not assume any register state after using a macro.

 however, if state must be assumed, it is possible to read the code inserted by

 the macro to determine if it uses registers which were assumed to hold a

 specific value.

macro name:

 MUTETRACK(n)

macro purpose:

 mute track 'n', with the first track being track 0.

 please note that there is currently a bug in MUTETRACK, where consecutive uses

 of MUTETRACK to the same track with an UNMUTETRACK leads to MUTETRACK

 being stuck at no output indefinitely. until this bug is fixed, be sure to make

 use of MUTETRACK only once before using UNMUTETRACK.

example:

 /* mute 4th audio track */

 MUTETRACK(3);

macro name:

 UNMUTETRACK(n)

macro purpose:

 unmute track 'n', with the first track being track 0. volume is restored

 to the value it was previously set at when MUTETRACK was executed.

example:

 /* unmute 4th audio track */

 UNMUTETRACK(3);

macro name:

 SETTRACKVOL_L(n, vol)

 SETTRACKVOL_R(n, vol)

 SETTRACKVOL_LR(n, vol)

macro purpose:

 set the volume of either the left channel, right channel, or both channels

 of track 'n'.

example:

 /* set left channel volume of the 3rd track to 0x1000 */

 SETTRACKVOL_L(2, 0x1000);

 /* set right channel volume of the 2nd track to 0x2000 */

 SETTRACKVOL_L(1, 0x2000);

 /* set left and right channel volume of the 1st track to 0x4000 */

 SETTRACKVOL_LR(0, 0x4000);

macro name:

 BASEPLUSRAND_AR(base, rand)

macro purpose:

 calculate a random value and place the output in AR. BASEPLUSRAND_AR sets

 the minimum value at 'base' and adds a value between (0-rand).

example:

 /* load AR with a value between 0-100 */

 BASEPLUSRAND_AR(0, 100);

 /* load AR with a value between 20-100 */

 BASEPLUSRAND_AR(20, 80);

SynDevKit PC Software

SynDevKit Command-Line Parser Reference

SynDevKit uses a single command-line parser for handling all build and download

functions, along with miscellaneous operations which make composing music with

SynDevKit easier. the parser is run from the root directory of where SynDevKit

is installed - for the purposes of this reference we will say that it is

installed in the c:\SynDevKit directory. the parser is called called sdk.pl

and is invoked by typing 'sdk' at the root of SynDevKit.

one important note on the parser is that it has a specific expectation for the

ordering of commands. if the commands are written in a different order, either

the parser or the underlying operation will return with an error message.

Getting Help within the Parser

to see an entire list of all SynDevKit commands, run the parser without any

argument (ie typing 'sdk'). to see the options for a specific command, type

'sdk cmd' where 'cmd' is that name of the particular command.

SynDevKit Parser Functions

the parser support the following commands:

	command
	purpose

	
	

	fb
	build a SynDevKit project

	fb_dl
	build and download a SynDevKit project

	dl
	download a SynDevKit project

	clean
	clean intermediate build files

	clone
	make a copy of an existing project

	tc
	SynDevKit timebase conversion utility

	fc
	SynDevKit datatype format conversion utility

additional information on each command is given below:

fb - Building a New Project

the fb command builds a SynDevKit project. the parser options for this command

are:

	comamnd type
	options
	description

	buildtool
	leagcy

vdsp
	build with leagcy (revision 5.11-7.0) tools

build with VisualDSP++ tools

	buildtarget
	chic

ez81
	SynDevKit target is chiclet development board

SynDevKit target is ADSP-2181 Ez-Kit Lite

	projname
	proj
	proj is project/directory to build

for example, to build a project called testproj1 using the legacy DSP tools and

for the ADSP-2181 EZ-Kit, type:

 c:\SynDevKit>sdk fb legacy ez81 testproj1

this command performs the following operations:

 1. runs the track parsing script trackparse1.pl on the testproj1 directory

 2. execute the makefile in the root directory, which build the specified

 project

the output executable file is called testproj1_ez81.exe.

fb_dl - Building and Downloading a New Project

the fb_dl command builds and downloads a SynDevKit project to a particular

target. the parser options for this command are:

	comamnd type
	options
	description

	buildtool
	leagcy

vdsp
	build with leagcy (revision 5.11-7.0) tools

build with VisualDSP++ tools

	buildtarget
	chic

ez81
	SynDevKit target is chiclet development board

SynDevKit target is ADSP-2181 Ez-Kit Lite

	projname
	proj
	proj is project/directory to build

for example, to build and download a project called testproj2 using the

VisualDSP++ DSP tools and for the ADSP-2181 EZ-Kit, type:

 c:\SynDevKit>sdk fb_dl vdsp ez81 testproj1

this command performs the following operations:

 1. runs the track parsing script trackparse1.pl on the testproj1 directory

 2. execute the makefile in the root directory, which build the specified

 project

 3. download the output executable to the specified hardware

dl - Downloading a Project

the dl command downloads a SynDevKit executable to a particular target. the

parser options for this command are:

	comamnd type
	options
	description

	buildtarget
	chic

ez81
	SynDevKit target is chiclet development board

SynDevKit target is ADSP-2181 Ez-Kit Lite

	projname
	proj
	proj is project/directory to build

for example, and download a project called testproj3 to the ADSP-2181 EZ-Kit,

type:

 c:\SynDevKit>sdk dl ez81 testproj3

note that the build tool type is irrelevent in downloading files to target

hardware since the output executables are euqivalent for each tool type. also

note that the actual filename which is expected for download in this example is

testproj3_ez81.exe. the parser recreates this name from the build target and

project name given on the command line.

clean - Clean Intermediate Files

the clean command moves the intermediate build files from the root directory to

the .\projname\obj directory, where projname is the name given on the command

line. the parser options for this command are:

	comamnd type
	options
	description

	buildtool
	leagcy

vdsp
	build with leagcy (revision 5.11-7.0) tools

build with VisualDSP++ tools

	projname
	proj
	proj is project/directory to build

for example, to move the intermediate files from a legacy tools build to the

.\testproj4\obj directory, type:

 c:\SynDevKit>sdk clean legacy testproj4

note that the tool type needs to be included here because the legacy and

VisualDSP++ tools generate different intermediate outputs. generally speaking

it is a good idea to leave the intermediate files in the root directory when

performing multiple builds as the build procedure will be quicker since

unchanged files will not be rebuilt. however, the makefile does not have any

dependency information on header files. therefore if any header files are

changed it will be necessary to clean the root directory first before attempting

a rebuild. if you don't know what dependencies are, information can be found

in the reference manuals for gmake. basically, as long as you don't change

the header files, you should not need to execute a clean on a project before

rebuilding. however, if a header file changes and it could affect multiple

files, executing a clean operation is the safest way to fully rebuild a project.

clone - Make a Copy of a Project

the clone command is used to copy the contents of one project into a new

project. the parser options for this command are:

	comamnd type
	options
	description

	projname
	oldproj
	oldproj is original project

	projname
	newproj
	newproj is new project

for example, to make a new project called testproj5 out of the template project,

type:

 c:\SynDevKit>sdk clone template testproj5

note that cloning a project does more than copy the contents of one directory

into another. SynDevKit has certain expectations on file names and directory

names, and the clone command automatically updates these names such that the

new project will build properly.

there are two main reasons why you would want to clone a project:

 1. when starting a new song, cloning the template project makes a new project

 available for the composition

 2. when trying something new and dramatic in a project, it might make sense

 to save a reference version to fall back on in case disaster strikes

this script has been tested and proven to work on all of the demo projects

which are a part of SynDevKit. however, because everyone codes differently,

it is difficult to guarantee that cloning will work for every input project.

it is highly recommended that, after making a new copy of a project to run a

file comparison tool on the DSP executables created from the old project and the

new one. if any discrepecies exist, email me at syndevkit@dspmusic.org.

tc - Time Conversion

the tc command is used to convert between different SynDevKit timebases. the

parser options for this command are:

	comamnd type
	options
	description

	conversiontype
	k2b

b2k

k2l
	convert input krate to equivalent BPM
convert input BPM to equivalent krate

convert input krate to equivalent LFO frequency

	inputval
	any number
	value to convert

for example, to determine the number of krate 'tics' there are if the song is

at 130 beats per minute (BPM), type

 c:\SynDevKit>sdk tc b2k 130

this function is useful for a number of reasons, such as:

 1. configuring sequencer and song control functions to operate a specific BPM

 2. calculating the proper LFO frequencies such that they better sync with

 the song

fc - Data Format Conversion

the fc command is used to convert between positive fractional values (between

0-1) and their hexidecimal equivalent. the parser options for this command are:

	comamnd type
	options
	description

	conversiontype
	f2h
h2f
	convert input fractional (ie 0.25) to unsigned hex
convert input unsigned hex (ie 0x1ba9) to fractional

	datatype
	s
u
	signed (between -1 & 1) input value
unsigned (between 0 & 1) input value

	inputval
	any number
	value to convert

for example, to convert the unsigned hexidecimal value 0x3a7e to its fractional

equivalent, type:

 c:\SynDevKit>sdk fc h2f u 0x3a7e

this command is useful for calculating probabilities and to better understand

how fixed point math works. the ADSP-218x processors are 16-bit fixed point
DSPs - therefore the most common datatypes used are either unsigned or signed

16-bit values. for more information on datatypes in SynDevKit, refer to the

section of this documentation called “datatypes and expected ranges”

Track Parsing, the SETTRACK macro, and trackparse1.pl
trackparse1.pl requires a perl intepretter. the most popular perl interpretter

for Windows PCs is available for free from ActiveState (www.activestate.com).

please note that installing ActivePerl changes the path on your PC and may

cause problems when using gmake in the SynDevKit build process. if a build

error occurs, try moving the include path for ActivePerl to the end of the

SET PATH command in autoexec.bat. this will cause DOS to use the ActiveState

path last, and only the appropriate files will be accessed from this directory.

it appears that this problem only happens on older Windows OSes (95, 98, ME).

trackparse1.pl is a preprocessing function which allows for entering TrigTrack

and VolTrack information in a more symbolic manner. normally TrigTrack and

VolTrack data is entered through DSP assembly code which writes specific

values to locations in memory (ex: DM(a_VolTrack00+4) = AR;). the trackparse1

perl script takes a symbolic "drawing" of a sequencer and translates this into

initializations of the TrigTrack and VolTrack arrays. an example of how

trackparse1 is used is given below:

/* SETTRACK(CLEAR, 0, 0, a--- --b- a--- --a- --a- ---- b--- c---,

 NOCLEAR, 16, 1, c--- b--- a--- b---,

 a, 100, 0x3000,

 b, 100, 0x2800,

 c, 50, 0x2000,

 END); */

first of all note that this preprocessed function is surrounded by comments.

this is because the 2181 assembler preprocessor should not handle this code.

the trackparse1 script requires the comments to be placed on the same line

as the SETTRACK proprocessor identifier and on the last line of the code

(immediately following the 'END);'). the perl script is easily fooled -

therefore this exact syntax is strongly suggested.

the first parameter on the first two lines determine if the TrigTrack and

VolTrack arrays are first cleared before the initialization data is written to

them. this allows for incremental changes to a track, along with complete

resetting and initializing of a track. in this case, the first track is

completely cleared (as indicated by 'CLEAR'), while the second track is not

(as indicated by 'NOTCLEAR'). the second parameter determines the offset

into the TrigTrack and VolTrack arrays (0 and 16). this is useful if the song

uses different segments of the TrigTrack/VolTrack arrays for sequencer data.

typically this will be set to zero. the third parameter determines which

TrigTrack/VolTrack will actually receive the initializing data. in this case,

tracks 00 and 01 are initialized. note that is not necessary to initialize

tracks in any particular sequence, or to initialized all tracks used in a song.

lastly, the combination of letters and dashes indicates where initialized

values are written into the TrigTrack and VolTrack arrays. the dash ('-') is

indicates where an initialization will not occur, while the various letters

indicate where initializations will occur. spaces may be placed between the

letters and dashes in any order and amount that is desired to improve

legibility. also note that this preprocessing operation supports

initializations of varying lengths for each track and as many tracks can be

initialized at this point as are required by the song.

immediately following the lines which initialize specific sequencer tracks are

lines which define the actual TrigTrack and VolTrack values for each symbol

used in the sequencer initialization. the first parameter sets the symbol

that the next two values will correspond two. the second value is for the

TrigTrack values and the third value is for the VolTrack value. all TrigTrack

and VolTrack initializations are placed on sequential lines.

the last line must contain only an END statement along with the closing

parenthesis, semi-colon and the end comments. the end comments must be placed

on this line - they will not be properly handled by trackparse1 if they are

placed on a different line.

when this SETTRACK macro is processed by trackparse1.pl, the following code

is added to the .dsp file:

/*

 * autogenerated code for SETTRACK macro

 */

 I2 = ^a_TrigTrack00;

 I3 = ^a_VolTrack00;

 CNTR = 128;

 do CL00124 until CE;

 DM(I2, M1) = 0;

CL00124: DM(I3, M1) = 0;

 /* inits for a */

 AX0 = 100;

 AX1 = 0x3000;

 DM(a_TrigTrack00+0+0) = AX0;

 DM(a_VolTrack00+0+0) = AX1;

 DM(a_TrigTrack00+0+8) = AX0;

 DM(a_VolTrack00+0+8) = AX1;

 DM(a_TrigTrack01+16+8) = AX0;

 DM(a_VolTrack01+16+8) = AX1;

 DM(a_TrigTrack00+0+14) = AX0;

 DM(a_VolTrack00+0+14) = AX1;

 DM(a_TrigTrack00+0+18) = AX0;

 DM(a_VolTrack00+0+18) = AX1;

 /* inits for b */

 AX0 = 100;

 AX1 = 0x2800;

 DM(a_TrigTrack01+16+4) = AX0;

 DM(a_VolTrack01+16+4) = AX1;

 DM(a_TrigTrack00+0+6) = AX0;

 DM(a_VolTrack00+0+6) = AX1;

 DM(a_TrigTrack01+16+12) = AX0;

 DM(a_VolTrack01+16+12) = AX1;

 DM(a_TrigTrack00+0+28) = AX0;

 DM(a_VolTrack00+0+28) = AX1;

 /* inits for c */

 AX0 = 50;

 AX1 = 0x2000;

 DM(a_TrigTrack01+16+0) = AX0;

 DM(a_VolTrack01+16+0) = AX1;

 DM(a_TrigTrack00+0+28) = AX0;

 DM(a_VolTrack00+0+28) = AX1;

/* SETTRACK(CLEAR, 0, 0, a--- --b- a--- --a- --a- ---- b--- c---,

 NOCLEAR, 16, 1, c--- b--- a--- b---,

 END); */

once the SETTRACK function is finished, it is automatically processed in the

build procedure. before the makefile is invoked and the ADSP-2181 assembler is

executed, trackparse1.pl is executed on all of the tracks in the specified

project directory. each .dsp file in the project directory is analyzed and

checked for the SETTRACK preprocessor indicator. if it is not found the

input file is not changed. if it is found, a new file is created with the SETTRACK

macro expanded into the appropriate DSP code. this new file has the same

filename as the original file, except that it has a parsed_ prepended to the

name. for example, if an initialzation was found in SongCTRL_00.dsp, a new

file called parsed_SongCTRL_00.dsp is created that has the SETTRACK macro

fully expanded. the .mak file in the project directory is automatically updated
to reflect the 'parsed_' filename change rather than the original unprocessed

filename. be sure to only make changes in the original file rather than the

‘parsed_’ file as it is automatically deleted every time the project is rebuilt.

also note that multiple SETTRACK macros can be placed in the same file. a

common usage of SETTRACK is to place multiple initializations in SongCTRL to

modify sequencer parameters over time. all labels include a line number with

them so that multiple initializations of TrigTrack/Vol Track values is

possible.

Adding New Signal Generators, FX, Envelopes to SynDevKit

before attempting to write any new generators, effects, or envelopes for

SynDevKit, be sure to understand and follow the DSP register state

and processing mode requirements covered in SynDevKit Register/Mode

Requirements.

all added processing functions should be written to support multiple instances.

this is handled through using an array of multiple sets of parameters and

passing a pointer to the start of the parameter data. at the end of the

function, the pointer variable is updated such that it points to the location

of the next set of parameters. then, at the end of processing a single audio

sample, the pointer register is set back to the head of the parameter array.

for example, look at WTGen.dsp. the first instruction of this function reads

DM(p_WTGen) and places the result into I2. I2 holds the pointer to the a_WTGen

array. WTGen then reads data from a_WTGen, and generates a new sample of

data. at the end of this function DM(p_WTGen) is updated with the value in

I2, which points to the start of the next block of parameters for WTGen.

new functions must be registers in the initialization functions of SynDevKit.

this involves adding an entry to SetPtrOpcodes inside of InitFunc.dsp. the

function FillGenFXPtrInits (called in GenFXIni.dsp) analyzes the code inside

GenFXIni.dsp, looking for SETPTR() macros, where the pointer inside the macro

is a generator, FX, or envelope. if it finds a matching opcode, it then

registers the addresses of array and pointer associated with the function

into the a_GenFXPtrInits array. this array is processed at the beginning

of each pass through the sample-generation loop in GFPInit.dsp.

again for an example, loop at how WTGen is handled. one instruction in the

SetPtrOpcode PM table is the SETPTR macro, which is used in the instruction-

matching function. if SETPTR(a_WTGen) is found inside GenFXIni, WTGenPtrInit

is called. this writes a_WTGen and p_WTGen into the a_GenFXPtrInits array.

this array is read in GFPInit.dsp. in this function, ^a_WTGen is written into

p_WTGen. this ensures that the first elements are read out of the a_WTGen

array on the first call of WTGen.

all generators, fx and generator envelopes are handled in the same fashion and

must be registered into the a_GenFXPtrInits array. the only function types

which are not handled in the same fashion are the memory envelopes (MemEnv1,

MemEnv3, and LFO3). these functions are always registered into the

a_GenFXPtrInits array (because they are always called at least once inside of

ModFuncs.dsp). the memory envelopes are registered into a_GenFXPtrInits at the

start of FillGenFXPtrInits. if a SETPTR() macro is found for a memory envelope, a

function is executed which determines the number of INIT_xxx macros are placed

after it for that particular mem envelope. this value is then fed into the

appropriate counter register in ModFuncs.dsp. this means that, once a memory

envelope is properly initialized into SynDevKit, it is not necessary to make

distinct calls to use it. for instance, initializing 6 LFO3 calls in GenFXIni

will set DM(v_NumLFO3) to 6 and LFO3 will then be called 6 times.

also note that the #define’d value ALLGENFX must be incremented as

additional functions are added to SynDevKit. this value should be equal to

the number of entries into the SetPtrOpcodes jumptable in InitFunc.dsp.

there are four basic types of processing algorithms in SynDevKit. each basic

type is explained below, along with information on how to write your own

algorithms which will work seamlessly within this framework.

SynDevKit Generators:

generators are called immediately after a modify instruction in GenFX.dsp.

these functions create an audio output which can then be fed through FX and

envelopes. all generators write their output into the memory location pointed

to by I7, but do not increment this pointer (ie use M6 not M7 in the memory

write instruction).

SynDevKit FX:

FX functions are called after a generator, and they process the output of the

generator just called. therefore, they read their input from DM(I7, M6), and

write their output to DM(I7, M6). this allows multiple FX functions to be

placed in series.

SynDevKit Envelopes:

envleopes set the amplitude and panning of a generator (along with whatever fx

were applied). they read the audio sample from the address pointed to by

DM(p_GenData). this pointer must be updated after reading a value pointed to by

it. the left channel output is pointed to by I4, and the right channel output

is pointed to by I7. these pointers must be incremented by 1 after writing the

audio output into them.

calls to envelopes are placed automatically in GenFX, starting at the Env

label. a function inside InitFunc analyzes the initialized parameters in

a_Seq2, and determines the appropriate call to write into PM. for instance,

if ADSRENV is written into the SEQ2_ENVTYPE location of a_Seq2, a call to

ADSRPanEnv will be placed in the Env table. also note that the #define list

after the definition of NUMENVTYPES must be updated if a new envelop is created,

and Seq2.dsp must also be updated. for instance, if the last envelope number

is 3 (as is it for ME3ENV), if a new envelope type is added it must be equal

to 4. the SEQ2_ENVTYPE parameter is fed into a jumptable inside Seq2, which

causes the execution of the envelope-specific code for that track. for

instance, the ADSRENV entry in the jump table initializes state inside

a_ADSRPanEnv such that the envelope will start back at the attack stage. this

code is only executed if the sequencer calls for a new "hit" within a track.

therefore, the ADSR envelop is automatically initialized every time it needs

to start over again.

SynDevKit Control-Rate Processes:

 - control-rate processes

 - memenv, LFO, seq - all called automatically at control rate

FAQs

calling this section frequently asked questions is a bit of a misnomer. at some

point there will be real questions to go here. for the moment, this section

covers some of the functionality and quirks of SynDevKit that are not easily

placed in other parts of this document.

q: can you explain why variables start with either an ‘a_’, ‘p_’, ‘ap_’, ‘v_’, or

 ‘b_’?
a: since the ADSP-218x assembler doesn’t use variable types (basically,

 everything is a 16-bit memory location), variables in SynDevKit have

 a qualifier prepended to them to make coding a bit easier:

	qualifier
	meaning

	
	

	a_
	array

	p_
	pointer

	ap_
	array of pointers

	v_
	single variable

	b_
	boolean/binary value

 therefore, a_WTGen is an array used with WTGen, p_WTGen is a pointer

 into the a_WTGen array, ap_CTRLTrack00 is an array of CTRLTrack

 pointers , v_NumMemEnv1 is a variable which holds the number of MemEnv1

 calls, and b_EndSong is a boolean value which determines if it is time to

 end the current song.

 also note that the varaible declarations for generators, FX and envelopes

 follow a specific pattern. the array and pointer variable declarations for

 a particular SynDevKit function are the same name as the function, just

 with a ‘a_’ or ‘p_’ prepended to them. for example, the parameter array

 and pointer associated with RotSynthGen are a_RotSynthGen and

 p_RotSynthGen.

q: when i try and link my project into SynDevKit, i get errors saying that it cannot

 find enough memory of the proper type. what does this mean?

 this most likely means one of two things:

 1. you’ve declared a PM module or PM/DM data such that it should reside in

 a specif ic segment, and that segment does not exist in the .ach file. if

 this is true, change the segment name to match the architecture file, or

 (even easier) don’t declare a segment name at all. it should not be necessary

 to declare explicit segment names for any part of SynDevKit.

 2. you’ve run out of memory. the default build of SynDevKit does use a lot

 of DM. to reduce this amount, try making the #define values in the

 xxxdefs.h file (where xxx is the project name) smaller for resources that you

 don’t use (ie the LENTRACKs for tracks that are not used, or LENKSBUFF

 or LENDSBUFF for Karplus Strong generators and DelaySynGen

 generators that are not used).

q: i added a new track to my song and now i don’t hear anything/the output

 is really distorted. any ideas why?

 in many ways SynDevKit is quite robust and capable of processing data in

 other musical development environments wouldn’t dream of doing. however,

 in other ways SynDevKit is quite delicate and small errors can cause big

 problems. if you make a change to the code and you can’t hear any output,

 a few suggestions on things to check are given below:

 * if another track was added, make sure that the number of initializations is

 not greater than the maximum number declared in GenFX.h. for instance,

 in the default build of SynDevKit, the maximum number of ProbSynthGen

 calls is 5 (because PROBSYNTHGEN_CALLS is equal to 5). if more than 5

 calls are needed, increase this number as appropriate. in general a

 generous number of initializations are automatically provided, but if a

 particular function is called many times over, it is important to check that

 GenFX.h supports the number requested by the project.

 * be sure to carefully check all macro inits. there is little datasize checking in

 calls to SynDevKit functions - therefore it is possible to crash SynDevKit

 with improper input data.

 * if indirect addressing is used (ie. I-regs), be sure to handle circular buffers

 appropriately. all SynDevKit functions assume that scratch I-registers can

 access linear buffers without initializing their L-registers. similarly, if circular

 buffers are used, be sure to set the appropriate L-register as needed.

 * check to make sure that system-constant registers are not modified.

 * if the output is distorted, check if the total processing load is greater than the

 available MIPS on the DSP. while it is hard to count the exact number of

 cycles used in any one project, if adding a track introduces a hard distortion

 along with slowing the overall track down, chances are the DSP has run out

 of MIPS. if additional tracks are needed, look into substituting high MIPS

 functions with those that consume fewer MIPS (for example WTGen2 rather

 than WTGen or HPWTGen2).

q: i’ve been playing around with SynDevKit for a while and i can’t seem to

 get anything cool out of it. any recommendations on compositional

 techniques?

 while writing music in assembly language is certainly a challenge,

 SynDevKit has some features which make it relatively easy to write complex

 sounding songs in a simple and elegent fashion. the sequencer built into

 SynDevKit is probably the most powerful function and can be used to

 create complex music quite quickly. unlike most sequencers (even those

 found on PCs) the timing of each track in SynDevKit is highly independent

 from each other. for instance, it is possible to have multiple tracks of

 varying lengths (both in number of steps and the time it takes to move

 from one step to another). additionally, adding a bit of swing to a

 track can make it feel more natural. swing settings are also independent

 for each track and the swing depth/step length are fully configurable,
 which further mutates timing while still keeping all tracks in sync with

 each other. the probabilistic nature of sequencer retriggering allows

 for similar-yet-nonrepeating measure to be created without manually

 setting note on/off values for each hit. lastly, it is possible to modify

 parameters for any track when the sequencer calls for a re-initialization

 on a triggered track. all of these things allow for complex rhythmic

 operation without the need to code a large number of functions.

 another powerful feature of SynDevKit are the LFOs. specifically, they

 are easily sync’ed to the sequencer since, along with a frequency setting

 they also have a sample/hold (S/H) features which is set at the krate

 (which is the rate used by the sequencer). a wide variety of LFO

 waveforms are avaialble and additional waveforms can be created and

 mapped into this function. also remember that LFOs can modify other

 LFOs leading to even more complex behaviour.

 lastly, it is highly recommended that, whenver possible, make

 if none of these appear to be true, send a description of the problem to me

 at syndevkit@dspmusic.org and i’ll try to help as much as possible.

Miscellaneous Notes on SynDevKit Operation

these notes are so i do not forget how certain portions of SDK work and a

reference on various system variables and buffers. both questions and answers

are included in here. it is not designed as a true reference, but should

provide some insight into how SynDevKit works for advanced users.

control tracks:

- always read and incremented whenever a new note is possibly triggered. not

 just when one triggers. is this the best way to handle things? this allows

 for a direct mapping of control tracks if they are the same length as the

 trigtrack, and for things to go out of phase if they are smaller than the

 trigtrack. the other option would be to only read/update ctrl track when a

 new sound is generated, but i think that you couldn't have a consistent

 event on a particular note if probabilistic seq was used. need to investigate

 further to see if additional CTRLTrack flexibility is really needed.

- only one mem envelope can be applied to a single location. this is true

 because the mem env parameters include the base/current value and there is

 no mechanism to sync them. this could be added at the ModFuncs level if

 needed (would require extra parameter in mem envs telling it where to pass

 a newly calculated value).

- actually, is this true? it might be possible to analyze all mem env

 functions to determine which ones write to the same address. then there could

 be a sync function called as a part of mem env that would pass the value to

 the next apporpriate mem env. again, not sure that this is really needed.

 would allow for applying an LFO to a ramping value which may be neat, but

 i won't implement this unless it is requested.

GenFXIni call flow:

* initialize all generators, fx, envelopes

* initialize track trigger arrays

* initialize all control tracks (new pointers and data)

* initialize sequencer

* call Seq2PostProc immediately after end of SEQ2 inits

 - call CalcSeq2Tracks;

 - determines total # tracks through comparing start of seq buffer to current

 location of I2. write to a_Seq+0

 - call SetEnvNums;

 - read env type, set env num based on how many times this envelop has been

 seen in the Seq2 array. uses a_EnvTypes to keep running total of each

 env type

 - call InitTrackTypeArray;

 - keep track of each env type for every track.

 - call InitTrigVolCTRLPtrs;

 - init "assumed" pointers in Seq2. ap_CTRLTrack (control track ptr),

 a_CTRLTrack (base trig ptr and curr trig ptr), a_Voltrack (volume array

 ptr), a_TrigTrack (trigger array)

* set tics per measure - used in SongCTRL to determine call rate.

* set AR to point to start of GenFXIni function, AX0 to point to end of GenFXIni

 function, and call FillGenFXPtrInits

 - register functions in a_GenFXPtrInits that are always called (all mem envs)

 - read opcode from GenFXIni. compare opcode to all opcodes registered in

 SetPtrOpcodes. if it's a match, call the function in the opcode table to

 register function in GenFXPtrInits array to force re-init of pointer every

 time a new sample is generated. if not, go to next element in opcode array.

 continue until all registered opcodes are scanned and compared.

 - if a mem env is found, instead of registering the function in

 a_GenFXPtrInits, calculate the number of calls to make to this function in

 ModFuncs.

* call GenFXIniPostProc

 - call CalcNumPtrInits. determines number of gen/fx functions in

 a_GenFXPtrInits array, stores value at head of array.

 - call InitEnvCalls. analyze envelope types in Seq2 array and writes the

 apprpriate opcode starting at ^Env in GenFX.

Credits

Thanks to my cohorts in the DSP Music Syndicate (Ben Recht, Brian Whitman,

and Noah Vawter) for providing ideas and creating songs with SynDevKit.

Also thanks to Analog Devices and MIT for providing DSP development

tools and $$$. Lastly, thanks to those who have supported me and been

patient while I’ve worked on this project for far too long.

Ethan Bordeaux

etsi vs etsu

syndevkit@dspmusic.org
www.dspmusic.org
www.dsperado.com/chiclet
8x-SynDevKit

3/16/2004
syndevkit@dspmusic.org

Page 104 of 107

