TAC Name: TAC1-Display7Seg

21.
Purpose

22.
Files Used

23. Design of TAC1-Display7Seg:

54.
How to Rebuild the DSP TAC?

55.
Procedure To Execute DSP TAC:

55.1 General procedure for all the Tacs

55.2 How to Execute DSP TAC?

55.3 How to send TCS Message to DSP TAC?

1.
Purpose

The purpose of this TAC is to show the user

· How to display of input TCS Message on 7-segment display.

· How to receive the TCS Message back as it was received.

· How to execute the DSPTAC

2.
Files Used
1. tacDisplay7Seg.dsp
2. tic_hdr.dsp
tacDisplay7Seg.dsp: This file contains the source code for displaying the input Tcs message on 7 segment display and sends the Tcs message back as it was received. This file contains the routines

1. TacInit: This contains all the initialization code

2. TacMain:
 This contains all the code needed to display the Tcs message.

3. TacDelay: This routine produces a delay between two successive displays.

4. TacSendTcsMsg: This routine copies the received Tcs message into Transmit Buffer.

tic_hdr.dsp: This file is a header file, which contains the interrupt vector table where user can add Interrupt Service Routine (ISR).

3. Design of TAC1-Display7Seg:

TacInit_:

/***

Function:
TacInit

Inputs:

None

Returns:

None

Description:
This is the initialization subroutine in which we can add all our initialization code needed for the specific Tac.

**/
Flowchart:

[image: image1.wmf]Begin

Add all DSP Specific

Initializations

Return

TacMain_:

/***

Function:
TacMain

Inputs:

Tcs Message

Returns:

None

Description:
This is the main routine, which contains all the code needed to display the input Tcs message on 7 segment display. This routine first reads the number of bytes in Tcs message and displays each byte using SDO_WriteValue Routine. This routine also produces delay between two successive displays and sends back the Tcs Message using TacSendTcsMsg routine.

***/

Flowchart:

[image: image2.wmf]Begin

Get the TCS Message

&

Read the number of bytes

in TCS message

Call

SDO

_

WriteValue

 to

display each byte of TCS

message on

7

seg display

Call

TacDelay

 to produce

delay in between two

successive displays

.

Number of bytes displayed

==

Total

number of bytes in TCS Message

?

Call

TacSendTcsMsg

To send back the TCS

message as it was received

Clear

NewTcsMsg Flag

&

 Status Flags

To receive a new TCS message

Return

yes

NO

TacDelay_:

/***
Function:
TacDelay

Inputs:

None

Returns:

None

Description:
This subroutine is used to produce delay, which can be useful in various applications, which require delay.

***/

Flowchart:

[image: image3.wmf]Begin

Use Nested Loops to

produce the Delay

Return

TacSendTcsMsg_:

/***
Function:
TacSendTcsMsg

Inputs:

None

Returns:

None

Description:
This subroutine writes the Tcs Message to MCU-DSP Shared Memory and also sets the Status flags. This function is used to send the Tcs Message back as it was received.

***/

Flowchart:

[image: image4.wmf]Begin

Copy Received TCS

Message to Transmit Buffer

Return

4.
How to Rebuild the DSP TAC?

1.Open the Command Prompt get the batch file /build_setup/
2.Run the batch file build_TAC1_ADxxxx.bat at command prompt to generate executable (.exe) file

Here ’ xxxx’ refers to the chipset number that can be AD6522, AD6525/6, AD6527/28/29 and AD6758.

3. The .exe file is generated at /code/bin/ TAC1-ADxxxx-Display7Seg.exe, which can be downloaded into DSP Memory using Forge Commander.

5.
Procedure To Execute DSP TAC:

5.1 General procedure for all the Tacs

1. Download the Forge Target Image into Flash (using Micro loader).

(Select the particular Image from Forge Installation folder "\Target Images")

2. Press the Reset button on Anvil EVB.

3. After Downloading " 0x0000 " is displayed on 7 segment display and " Forge Target v3.0 " on LCD display.

5.2 How to Execute DSP TAC?

1. Use Forge Commander to Download the Executable file at " \code\bin\Tac1-ADxxxx-Display7seg.exe

“ Here ’ xxxx’ refers to the chipset number that can be AD6522, AD6525/6, AD6527/28/29 and AD6758.

2. "0xAb00" is displayed on 7 segment display after downloading the Executable file.

5.3 How to send TCS Message to DSP TAC?

1. Open the command prompt and get the perl script files from the location

"<forge install folder>\samples\Target\DSP_TAC\scripts"

2. Run the perl scripts either SendBasicTcsMsg2DspTac.pl or SendMaxTcsMsg2DspTac.pl at command prompt. The input Tcs message is displayed on 7segment display.

SendBasicTcsMsg2DspTac.pl: This script contains the Tcs message of 3 bytes 0x01, 0x02 and 0x03. These will be displayed on 7 segment display and the script waits for the response message from DSP TAC.
SendMaxTcsMsg2DspTac.pl: This script contains the Tcs message of 255 bytes from 0x00 to 0xFE. These bytes will be displayed on 7 segment display and the script waits for the response message from DSP TAC.

_1152634030.vsd
Begin

Use Nested Loops to produce the Delay

_1152634951.vsd
Begin

_1152634158.vsd
Begin

Copy Received TCS Message to Transmit Buffer

��

_1152632406.vsd
Begin

Add all DSP Specific Initializations

