
8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 1 of 101 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The DSP Music Syndicate Development Kit 
for the ADSP-2181 EZ-Kit Lite 
and Chiclet



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 2 of 101 

 
Introduction....................................................................................................................................................................4 

SynDevKit Requirements......................................................................................................................................4 
SynDevKit Features Under Development: ......................................................................................................5 
Revision History:......................................................................................................................................................6 
Revision History:......................................................................................................................................................6 
Revision History:......................................................................................................................................................6 

SynDevKit Copyright..................................................................................................................................................9 
SynDevKit Software................................................................................................................................................9 
Music Generated With SynDevKit .....................................................................................................................9 

A SynDevKit Tutorial................................................................................................................................................10 
SynDevKit Register/Mode Requirements......................................................................................................10 
Part A:  creating a new song project.................................................................................................................11 
Part B:  overview of how to make a loop........................................................................................................14 
Part C:  creating multiple tracks, using FX, memory modifiers and SongCTRL ..............................20 

bass drum: ..............................................................................................................................................................20 
hihat/pitched percussive noise: ...........................................................................................................................22 
lead/FM synthesizers: ..........................................................................................................................................23 
additional noises:...................................................................................................................................................24 
TrigTracks, VolTracks, CTRLTracks, TrigInit, and the sequencer: ............................................................25 

Part D:  using SETTRACK and trackparse1.pl .............................................................................................31 
Part E:  placing multiple songs in a single .exe............................................................................................36 
Part F:  advanced synthesis and sequencing techniques...........................................................................37 

SynDevKit Generators, Effects, and Envelopes ................................................................................................38 
random numbers and SynDevKit .....................................................................................................................38 
making multiple calls to the same function...................................................................................................39 
datatypes and expected ranges..........................................................................................................................39 
ADSRPanEnv...........................................................................................................................................................40 
AlgoSineGen ............................................................................................................................................................41 
AlgoSineSatGen ......................................................................................................................................................41 
BitmaskFX .................................................................................................................................................................43 
ClampFX....................................................................................................................................................................44 
DelaySynGen ...........................................................................................................................................................45 
Exp1Gen ....................................................................................................................................................................46 
ExpDecayEnv...........................................................................................................................................................47 
ExpImpulseGen ......................................................................................................................................................49 
FM2Op0Gen .............................................................................................................................................................50 
GenSHFX ...................................................................................................................................................................52 
HPWTGen2 ..............................................................................................................................................................53 
KillTimeFX ................................................................................................................................................................54 
KSGen .........................................................................................................................................................................55 
LFO3 ...........................................................................................................................................................................57 
MemEnv1..................................................................................................................................................................59 
MemEnv2..................................................................................................................................................................59 
MemEnv3..................................................................................................................................................................59 
ME2_CURRSCALE................................................................................................................................................60 
MultiGen ...................................................................................................................................................................63 
OscCombGen ...........................................................................................................................................................64 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 3 of 101 

PerNoiseGen ............................................................................................................................................................66 
PrevCurrFiltFX........................................................................................................................................................67 
ProbKSGen ...............................................................................................................................................................68 
ProbSynGen .............................................................................................................................................................71 
RectifyFX ...................................................................................................................................................................72 
RotSynthGen............................................................................................................................................................73 
Seq2 .............................................................................................................................................................................74 
SVFFX .........................................................................................................................................................................78 
TunedRotSynthGen ...............................................................................................................................................79 
WaveShapeFX..........................................................................................................................................................80 
WTGen .......................................................................................................................................................................82 
WTGen2.....................................................................................................................................................................82 
WTGenSyncFX ........................................................................................................................................................84 
ZeroSampsFX...........................................................................................................................................................85 

SynDevKit Mixers.......................................................................................................................................................86 
LBasicMix..................................................................................................................................................................86 
RBasicMix .................................................................................................................................................................86 

Miscellaneous SynDevKit Macros.........................................................................................................................87 
MUTETRACK(n)....................................................................................................................................................88 
UNMUTETRACK(n).............................................................................................................................................88 
SETTRACKVOL_L(n, vol)...................................................................................................................................88 
SETTRACKVOL_R(n, vol) ..................................................................................................................................88 
SETTRACKVOL_LR(n, vol)................................................................................................................................88 
BASEPLUSRAND_AR(base, rand)...................................................................................................................89 

SynDevKit PC Software............................................................................................................................................90 
trackparse1.pl ..........................................................................................................................................................90 
cloneproj.pl...............................................................................................................................................................92 
formatconv.exe........................................................................................................................................................93 
timeconv.exe............................................................................................................................................................93 

Adding New Signal Generators, FX, Envelopes to SynDevKit ...................................................................94 
SynDevKit Generators:.........................................................................................................................................95 
SynDevKit FX: .........................................................................................................................................................95 
SynDevKit Envelopes: ..........................................................................................................................................95 
SynDevKit Control-Rate Processes: .................................................................................................................96 

FAQs ...............................................................................................................................................................................97 
Miscellaneous Notes on SynDevKit Operation ................................................................................................99 

control tracks: ..........................................................................................................................................................99 
GenFXIni call flow: ................................................................................................................................................99 

Credits ......................................................................................................................................................................... 101 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 4 of 101 

 

Introduction 
 
the Syndicate Development Kit (SynDevKit) is a full-featured development 
environment for creating algorithmic and generative musical pieces on a 
Digital Signal Processor (DSP).  this release is for the ADSP-2181 EZ-Kit and 
for Chiclet (aka the DSP music box), a portable and powerful DSP board 
designed by the DSP Music Syndicate. 
     
the main features of SynDevKit include: 
 
    * over a dozen generators, includes basic waveforms in virtual analog (VA) 
      synthesis, tweaked karplus strong (KS) generators, and many unique 
      synthesizers 
       
    * multiple FX modules, including state-variable filters (SVF), bitmasking, 
      and other unique functions to sculpt and crunch sound 
       
    * multiple envelopes and stereo pan on all audio outputs 
     
    * a flexible step sequencer, with support for unlimited number of tracks 
      (limited only by available memory and MIPS), control tracks for automating 
      feeding new parameters into generators/FX, individually configurable 
      sequence lengths, swing, and probabilistic sequencing 
       
    * methods of automatically modifying SynDevKit parameters with 
      LFOs (with sample/hold and configurable waveforms) and envelopes 
 
    * Perl scripts for simplifying sequence development and managing projects 
       
    * codified methodology of triggering events on measures to create full 
      compositions 
       
    * methods of creating single DSP executables that contain multiple songs 
     
    * documentation and examples on how to include custon generators, FX, and 
      control modules to the existing infrastructure 
 
SynDevKit Requirements 
 
SynDevKit requires the following hardware and software: 
 
    * Ananlog Devices DSP Development Tools, revision 5.11-6.1 
    * a Perl interpretter (1) 
    * either a Chiclet DSP board (2) or an ADSP-2181 EZ-KIT Lite (3) 
 
(1)  the recommended Perl interpretter is availabe from ActiveState 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 5 of 101 

      (www.activestate.com).  note that installing this tool can cause problems 
      with the make system for SynDevKit.  for more information refer to the 
      trackparse1.pl  section of SynDevKit PC Software . 
(2) Chiclet is a DSP board designed by the DSP Music Syndicate.  for more 
      information refer to www.dsperado.com/chiclet. 
(3) SynDevKit has only been tested with the older ADSP EZ-KIT Lite which 
      came with revision 5.11 of the development tools.  currently available 
      2181 EZ-KITs use a newer version of the development tools and are not 
      compatible with SynDevKit.  for more information email me at 
      syndevkit@dspmusic.org. 
 
SynDevKit Features Under Development: 
 
this is a small list of the features i am looking to add to SynDevKit in the 
future.  if there are any specific features that you would like to see added 
to SynDevKit, email me at syndevkit@dspmusic.org.  also remember that it  
is possible to add you own generators and FX to SynDevKit.  see “Adding 
New Generators, FX, Envelopes to SynDevKit” for more info. 
 
    * audio input 
    * optimizations of various generators and FX 
    * wet/dry functionality to FX (as appropriate) 
    * MIDI input for realtime parameter tweaking 
    * additional generators/fx/envelopes 
      - averaging noise generator 
      - additional PrevCurrFilt types 
      - exponential synthesizer 
        - all 4 phases are expontially increasing/decreasing waveforms 
      - additional memory envelopes 
        - exponential increase, n-step arbitrary envelope 
      - additional formulae for setting bits in ProbSynthGen 
      - multitap delay line FX 
      - compressor/expander based on curve fitting algorithm 
      - ADSR with krate-based parameters as opposed to increment/decrement 
      - square wave with easy PWM 
      - tuned probsynthgen using division 
    * additional modes of operation on a_CTRLTrack 
    * adjustable krate 
    * additional documentation and example on generating ‘useful’ waveforms 
      along with preset drumkits built into SynDevKit 
    * traslation script between fruityloops patches and SynDevKit sequencer 
      parameters 
    * port to open21xx development environment 
    * get sample rate to 44.1kHz in chiclet 
 
as much as possible, the addition of these features will be made transparent 
to existing songs.  for instance, if a new feature is added to an existing 
generator or FX unit, a new macro will be defined to access these features and 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 6 of 101 

the old macro will be redefined such that it will mimic old behaviour.  because 
of this, using the #define values in GenFX.h as much as possible is highly  
recommended, as it will minimize the effect of upgrading individual functions. 
however, in some cases it will not always be possible to avoid affecting the 
behaviour of existing functions.  i appologize in advance. 
 
 
Revision History: 
 
8x-SynDevKit 1.20                                                         24nov2003 
 
new features from 1.10 
 
    * added preprocessing stage to build to handle symbolic notation for 
      TrigTrack/VolTrack initializations (trackparse1.pl) 
    * script for generating new projects based on old projects (cloneproj.pl) 
    * new memory envelope (MemEnv2) for multi-stage exponential decay 
    * additions and corrections to this document 
    * (hopefully) fixed the initialization bug for chiclet.  at the very lest it  
      is behaving much better than before. 
     
known bugs in 1.20 
 
    * preprocessing is very touchy.  be sure to follow syntax exactly as given 
      in this documentation, and report all problems to syndevkit@dspmusic.org. 
 
 
Revision History: 
 
8x-SynDevKit 1.10                                                         05nov2003 
 
new features from 1.03 
 
    * this document 
     
known bugs in 1.10 
 
    * MUTETRACK still not functional when executed multiple times before an 
      UNMUTETRACK 
 
 
Revision History: 
 
8x-SynDevKit 1.03                                                         23oct2003 
 
new features from 1.02 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 7 of 101 

    * tunable rotation synthesizer (TunedRotSynthGen) 
    * modular mixing environment (moved mixer to GenFX from system code) 
    * lots of tutorial information 
     
known bugs in 1.03 
 
    * fixed MUTETRACK bug 
 
 
8x-SynDevKit 1.02                                                         15oct2003 
 
new features from 1.01 
 
    * exponential impulse generator (ExpImpulseGen) 
    * high precision (16.16 frequency input datatype) wavetable generator  
      (HPWTGen2) 
    * codified method of passing multiple generators through a single 
      envelope (MultiGen) 
    * 2 slope waveshaper (compressor/expander/distortion) (WaveShapeFX) 
    * oscillator sync for WTGen/WTGen2 (WTGenSyncFX) 
    * additional (untested) OscCombGen types.  abs(a)*b, pick bigger of a or b, 
      picker smaller of a or b. 
    * PC program (formatconv.exe) to convert fractional values to unsigned hex 
      and vice versa. 
 
bugfixes on 1.01: 
 
    * build environment cleaned up and simplified.  .bat files provided for 
      2181 ezkit and chiclet targets.  removed incremental build features as 
      depedencies were not being handled and makefile cannot handle multiple 
      projects which have the same filename. 
     
known bugs in 1.02 
 
    * somehow the amb1 project stopped working.  to be investigated. 
 
 
8x-SynDevKit 1.01                                                         05oct2003 
 
new features from 1.00 
 
    * audio rate sample/hold (GenSHFX) 
    * RotSynthGen has configurable rotation amount 
    * added basic 2181 ezkit support to SynDevKit, split files into chiclet- 
      specific source, 2181 ezkit-specific source, and common source. 
 
bugfixes on 1.00: 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 8 of 101 

 
    * automatic hanging of envelopes at ^Env now properly supports ME3ENV type. 
    * fixed negative frequency handling in FM2Op0Gen 
    * cleanup of file locations for chiclet-specific and common files 
    * fixed bugs inhibiting placing multiple songs in single executable 
    * hardly a bugfix, but the full name of this release is now 8x-SynDevkit, 
      not chiclet-SynDevKit.  a little more inclusive. 
     
known bugs in 1.01 
 
    * problems with build environment, especially when working with multiple 
      music projects with files of the same name in each project.  they are 
      not properly handled with current dependencies.  either all project- 
      specific files must have different names from files in other projects, or 
      the forcebld batch command should be used 
    * seems to be some problems with building files with 2181 and chiclet. 
      investigation is ongoing.  likely that directory structure will change. 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 9 of 101 

 

SynDevKit Copyright 
 
SynDevKit Software 
 
SynDevKit and all of its contents are copyrighted to Ethan Bordeaux (c) 2001, 2002, 2003.  
Individual functions within SynDevKit may be used in non-commercial (ie free) applications.  
People wishing to use SynDevKit/portions thereof in commercial applications or the core 
architecture of SynDevKit in non-commercial applications should contact me at 
syndevkit@dspmusic.org. 
 
Music Generated With SynDevKit 
 
All music generated my SynDevKit is copyrighted to the creator of the music, though I would 
love to hear what you’ve made. 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 10 of 101 

A SynDevKit Tutorial 
 
SynDevKit was designed to be both very simple to use and also incredibly 
flexible for creating songs of a wide variety of styles.  this tutorial covers 
the basics of creating new song projects and simple loops, along with more 
complex techniques for generating and controlling sound and sequence.  while 
there is no one best-way of using SynDevKit, it is recommended that when first  
learning the environment that you follow the basic guidelines given below. 
some methods may seem arbitrary, but at times there are buried reasons for why 
operations need to be structured in the fashion that they are.  once you become 
more familiar with how SynDevKit works, it is certainly possible to bend or 
break many of these rules as you wish.  but for now pay attention!  it will save 
you lots of grief. 
 
SynDevKit Register/Mode Requirements 
 
before looking into how to make music with SynDevKit, it is important to 
understand which resources are consumed by this development package 
and what are the assumed processor states. 
 
  - never use the following registers: 
    *  I0/L0:  pointer to receive buffer 
    *  I1/L1:  pointer to transmit buffer 
    *  I4/L4:  pointer to codec parameter table 
    *  I7/L7:  pointer to audio sample output array 
     
  - the following registers have fixed values/purposes 
    *  I6:  pointer to noise buffer (circular buffer, never change L6) 
    *  M0:  0 
    *  M1:  1 
    *  M6:  0 
    *  M7:  1 
   
  - the following data processing modes are assumed at function entry/exit.  if 
    they are modified, they must be placed back into this configuration on 
    function exit. 
     
    *  ALU saturation enabled 
    *  fractional multiplication enabled 
    *  bit reversal disabled 
   
  - the follow system modes are assumed and must never be change 
   
    *  all algorithmic processing happens with the primary registers, all 
       interrupt processing happens with the secondary registers.  only use 
       the ena sec_reg instruction in interrupt service routines. 
    *  interrupt nesting is disabled 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 11 of 101 

    * lastly, always reset any L-registers to zero on function exit.  this is 
      perhaps the most common bug in working with SynDevKit. 
 
 
Part A:  creating a new song project 
 
in SynDevKit, every song is made in a separate directory with a number of files 
dedicated to it.  song directories are commonly referred to as projects.  SynDevKit 
comes with a number of default projects as templates and examples on how to 
create music within this environment.  to start making music with SynDevKit, it  
is first necessary to make a new project.  there are two ways to make a new 
project in SynDevKit - either with a Perl script or manually.  genreally speaking 
the Perl script will be used.  however, it is important to understand how to make 
new projects from existing ones (to gain understanding of the SynDevKit build 
environment and in case the Perl processor cannot handle automatically  
recreating a project you’re working with).  therefore, both methods are covered below: 
 
creating a new project with cloneproj.pl: 
 
to make a new project using the Perl script enter the following on the command 
line (in the root directory of SynDevKit): 
 
    cloneproj template clonetemplate 
 
cloneproj is a batch file which executes cloneproj.pl.  this script creates a 
directory called clonetemplate, copies all of the files from template over to 
clonetemplate, and makes all of the appropriate source-level changes to enable 
clonetemplate to build.  also note that cloneproj can be used to create copies 
of projects that contain full songs, not just the template project. 
 
for more information, refer to the cloneproj.pl  section of SynDevKit PC Software . 
 
manually creating a new project: 
 
cloneproj.pl was made to be as flexible as possible and should be able to 
handle a wide variety of source files.  however, because automated conversion 
can never be perfect, it is important to understand the steps involved 
in manually making a new project.  these steps are listed below. 
 
1.  create a new directory at the same level as gen_fx, chicsys, etc.  this 
    directory will hold all of the files for a new song. 
 
2.  copy all of the files from the template directory to the new directory, 
    including the hdr and obj directories 
          
3.  change the name of the makefile from template.mak to xxx.mak, where xxx is 
    the name of the directory this file is contained in.  change the name of 
    templateVars.dsp to xxxVars.dsp, where xxx is the name of this directory. 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 12 of 101 

 
4.  modify the filelist inside the .mak such that it reflects the change in name of 
    templateVars.dsp. 
 
5.  modify the #include in all files in this directory such that the line: 
     
      #include "template.h" 
       
    is now: 
     
      #include "xxx.h" 
       
    this can be done with a global search/replace on template.h INSIDE THE xxx 
    DIRECTORY. 
       
6.  rename the files template.h, templatevars.h, and templatedefs.h (contained 
    in the .\xxx\hdr directory) into xxx.h, xxxvars.h, and xxxdefs.h.  edit 
    xxx.h such that it reflects these new filenames.  for example, if the name 
    of the project directory is foo, template.h becomes foo.h, templatevars.h 
    becomes foovars.h, and templatedefs.h becomes foodefs.h. 
           
at this point, this new executable should be buildable, although when run it  
will not make any sound.  to test that the code is building properly, go back to 
the root directory of SynDevKit.  depending on whether or not you are building 
for chiclet or the ADSP-2181 ezkit, you will type: 
 
    fb_chic xxx (for chiclet) 
      or 
    fb_ez81 xxx (for 2181 ezkit) 
     
where xxx is the name of the project. 
     
the assembler should assemble all of the files in the gen_fx, chicsys, and xxx 
directories, link them together, clean some intermediate files, and leave 
the DSP executable, executable map file, executable symbol table in this directory. 
the name of the generated files will be of the form: 
 
    xxx_chic.exe (chiclet executable) 
    xxx_chic.map (chiclet map file) 
    xxx_chic.sym (chiclet symbol table) 
 
    or 
 
    xxx_ez81.exe (2181 ez-kit executable)  
    xxx_ez81.map (2181 ez-kit map file)  
    xxx_ez81.syn (2181 ez-kit symbol table) 
 
you also probably noticed that SynDevKit takes longer to link that most other 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 13 of 101 

ADSP-218x executables (expect 10+ seconds, even on fairly modern machines). 
this is due to the large number of circular buffers, which have special 
requirements in the link stage of executable generation. 
 
to confirm that both of these methods worked in cloning the template project, 
try building all three projects and running fc (a file comparison utility 
built into DOS) on the three executables.  fc should report in all instances 
that no differences were found. 
 
now that we have a new directory for music creation, it would make sense to 
learn a bit more about the files contained within.  an overview of their 
functionality is given below: 
 
    FABCNTR_00.dsp:  controls the number of samples written to the output buffer 
                                      before krate(1) processing.  it is useful for creating 
                                      noisy glitching effects.  under 'normal' circumstances, 
                                      the AR register should be set to 128 on function return. 
     
    GenFX_00.dsp :  this is where the main audio rate processing occurs, and 
                               where the calls to the various generators and effect  
                               algorithms are placed. 
                 
    GenFXIni_00.dsp:  initialization routines for all generators and effects 
     
    IRQEProc.dsp:  IRQE interrupt service routine.  pressing the interrupt 
                              button forces execution of this code.  can be used for 
                              debugging purposes, for skipping track in multisong mode, 
                              etc. 
                    
    ModFuncs_00.dsp :  location for krate audio algorithms; including sequencing, 
                                    LFO/memory envelope algorithms, and song control 
                                    functionality. 
                        
    SongCTRL_00.dsp:  jumptables and methods for modifying song parameters over 
                                      time. 
                    
    SongPtrs.dsp:  pointers to functions that control song behaviour and are 
                             called directly from the main code (FABCNTR, GenFX, GenFXIni, 
                            ModFuncs). 
                    
    templateVars.dsp :  variables specific to this directory/song. 
     
    template.mak:  list of all files in template directory.  this file must 
                             have the same name as the directory it is contained within. 
                    
    TrigInit_00.dsp:  utility functions called from Seq2 that retrigger generators 
                                 and modify algorithmic parameters. 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 14 of 101 

(1) krate refers to control-rate processing (as opposed to audio rate 
     processing).  krate processing happens at 1/128 the speed of audio rate 
     processing.  functions such as the sequencer and memory envelopes run at this 
     rate.  all krate processing occurs inside ModFuncs_00.dsp (and the functions 
     that it calls). 
 
the hdr directory contains a dummy header file called template.h, which includes 
templatevars.h and templatedefs.h.  templatevars.h is where variables declared 
in templateVars.dsp are declared as .EXTERNAL variables (except for those that 
are a part of the sequencer, which are placed in .\gen_fx\hdr\externs.h). 
templatedefs.h includes a wide variety of #define values that control the length 
of buffers for the sequencer along with additional #define values for the length of 
buffers used in the karplus-strong generators. 
 
now that we have a fresh new project ready for makaing music, what do we do? 
 
 
Part B:  overview of how to make a loop 
 
SynDevKit is designed to allow for quick and easy creation of loops, along with 
the flexibilty required to design complex musical passages.  the two main files 
which must be modified are GenFXIni_00.dsp and GenFX_00.dsp.  all signal 
generators, fx, and envelopes which are used to create sound are initialized 
in GenFXIni and called in GenFX. in this example we will generate a single 
squarewave at 100Hz which will retrigger every second.  what do we need to  
make this in SynDevKit? 
 
  1.  a wavetable generator (WTGen, WTGen2, or HPWTGen2) 
  2.  an envelope (ADSRPanEnv or ExpDecayEnv) 
  3.  initialzation of the sequencer (both it's own variables and the triggering 
      buffer) 
  4.  a call to the appropriate wavetable generator 
   
first, let's initialize the wavetable generator.  this happens at the beginning 
of GenFXIni_00.dsp (where the comment /* insert generators and fx 
initializations here */ is located in the code).  immediately after the comment, add 
in the following code: 
 
    SETPTR(a_WTGen2); 
    INIT_WTGEN2(100, ^a_WTSq); 
     
while these two lines look similar to C functional calls, they are not.  they 
are macro definitions designed to simplify initializing SynDevKit functions. 
definitions of these macros can be found in .\gen_fx\hdr\GenFX.h. 
 
the SETPTR macro initializes I2 to point to a_WTGen2 (I2 = ^a_WTGen2; in 218x 
assembly language).  the INIT_WTGEN2 macro initializes values in the a_WTGen2 
array.  the first parameter is the frequency (100), and the second parameter is 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 15 of 101 

a pointer to the start of the buffer WTGen2 will read data from to generate its 
output.  note that ^a_WTSq is actually written into the third location of a_WTGen2. 
the second location is an internal variable of WTGen2 and is automatically  
initialized by the macro (look for INIT_WTGEN2 in GenFX.h to see how this 
macro works). 
 
to get a sense of what these macros do, here’s what the above two macros look 
like in assembly: 
 
    I2 = ^a_WTGen2; 
    DM(I2, M1) = 100; 
    DM(I2, M1) = 0; 
    DM(I2, M1) = ^a_WTSq; 
 
it is important to always place a SETPTR macro BEFORE the first initialization 
macro of a particular type.  if SETPTR is not included in the code, the data 
designed to be sent to a_WTGen2 will go wherever I2 happens to be pointing to 
at that point in program execution. 
 
it is equally important to note that when initializing multiple SynDevKit 
functions, you only use one SETPTR macro.  if two WTGen2 functions are wanted, 
the INIT_WTGEN2 macros would be placed consecutively, with a SETPTR macro 
only coming before the first INIT_WTGEN2 macro.  for example, this would look 
like: 
 
    SETPTR(a_WTGen2); 
    INIT_WTGEN2(100, ^a_WTSq);              /* 100Hz squarewave */ 
    INIT_WTGEN2(150, ^a_WTSq);              /* 150Hz squarewave */ 
     
for now we will work with the single initialization of the wavetable generator.  next, 
we should initialize an envelope.  every generator must be passed through an 
envlope.  there are two to choose from - an ADSR (attack, decay, sustain, release) 
envelope or an exponential decaying envelope.  for this example we'll use an 
ADSR.  after the initialization of WTGen2, enter the following code: 
 
    SETPTR(a_ADSRPanEnv); 
    INIT_ADSRPANENV(128, 0x2000, 0x0100, 0x1000, 10, 0x0100, 0x4000); 
     
note that the SETPTR macro precedes the INIT_ADSRPANENV macro.  this macro is 
more complicated than the one for WTGen2 and will be broken down in detail: 
 
  ADSRPANENV_UR  (128): 
    this parameter determines the rate that the ADSR envelope parameters are 
    updated.  128 tells the ADSR to only update its parameters every 128 
    samples.  this is a typical value for this parameter and makes it relatively  
    easy to determine the total time of the ADSR envelope in relation to the 
    time between note retriggering in the sequencer.  this is true because the 
    control rate in SynDevKit is 1/128th the rate that audio is generated and 
    the sequencer runs at this rate.  therefore, if param 0 is set to 128, one 
    'tic' of the sequencer occurs every time the ADSR envelope is updated. 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 16 of 101 

     
    depending on the characteristics of the ADSR and the sound being modified, 
    a "zipper noise" may be heard along with the output signal.  this is due 
    to the stairstep nature of the ADSR envelope.  envelope parameter are 
    updated at the rate set by ADSRPANENV_UR, and when they are not 
    updated their value remains constant.  to reduce this distortion, set  
    this parameter to a smaller value.  the downside to this is that the ADSR 
    must perform more calculations, adding to the overall processor load. 
     
  ADSRPANENV_ATTACKRATE  (0x2000): 
    this is the attack rate of the ADSR.  every time the ADSR requests an 
    update (in this case every 128 samples), 0x2000 is added to the ADSR scalar 
    until it reaches full-scale (0x7fff). 
     
  ADSRPANENV_DECAYRATE  (0x0100): 
    this is the decay rate of the ADSR.  every 128 samples 0x0100 is subtracted 
    from the ADSR scalar local variable, until it reaches the sustain height. 
     
  ADSRPANENV_DECAYMIN  (0x1000): 
    this is the sustain height.  the ADSR scalar will clamp at 0x1000 for the 
    requested sustain time. 
     
  ADSRPANENV_SUSTAINLEN  (10): 
    this is the sustain time.  the sustain volume is held for 10*128 samples 
    (because the update rate of the ADSR is 128) 
     
  ADSRPANENV_RELRATE (0x0100): 
    this is the decay rate.  the ADSR scalar will decrease by 0x100 until it  
    reaches zero.  once it reaches zero, the output on this specific track will 
    be zero until the ADSR is retriggered. 
     
  ADSRPANENV_PAN  (0x4000): 
    this is the pan setting for this track.  0x4000 corresponds to center-pan. 
    to pan the track all the way to the left set this parameter to 0x0000, and 
    set it to 0x7fff to pan all the way to the right. 
     
again, keep in mind that all updates to the ADSR envelope occur at the rate 
requested by the first parameter.  if the first parameter is modified, all 
other ADSR parameters must be updated accordingly if the same total duration 
of the envelope is desired. 
 
now we have the wavetable generator and envelope initialized.  next, we need 
to initialize the trigger and volume buffers for this track.  the first track in the 
sequencer is hard-coded to use the a_TrigTrack00 and a_VolTrack00 arrays for 
holding triggering and volume data, respectively.  at the location in 
GenFXIni_00.dsp labeled with (/* init TrigTrack and VolTrack arrays as 
needed */), include the following code: 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 17 of 101 

    AR = 100; 
    AY0 = 0x2000; 
     
    DM(a_TrigTrack00+0) = AR; 
    DM(a_VolTrack00+0) = AY0; 
 
a_TrigTrack00 is an array which holds the probabilities that the generator & 
envelope will be retriggered at that point in time.  values in a_TrigTrack00 
should be between 0 and 100 (all locations are initialized to 0 on reset).  by 
setting a_TrigTrack00+0 to 100, the sequencer will always reset track 0 whenever 
it is appropriate (ie 100% chance of retriggering at this stage in the a_TrigTrack00 
buffer).  the rate that track00 is retriggered is based on parameters set in the 
sequencer, which will be explained in a moment.  
 
a_VolTrack00 is another array which contains the volume of the track for that 
specific 'hit'.  in this case, the volume is set to 0x2000 (full scale is 
0x7fff).  if the volume is set to 0x0000, no output will be heard, even though 
the generator & envelope is retriggered.  also note that there is a global scalar 
attributed to each track in the sequencer (a_LMixScalars and a_RMixScalars for 
left and right channels).  at startup, all tracks are set to full-scale 
output (0x7fff).  these arrays are useful for setting the volume of a track without 
needing to scale each value in the appropriate a_VolTrack array.  usage of the 
global scalar arrays will be covered later in the tutorial. 
 
also note that there are separate a_TrigTrack and a_VolTrack arrays for each 
track in the sequencer.  in its default configuration, the sequencer is designed 
to handle a maximum of 32 tracks (using a_TrigTrack00-a_TrigTrack31 and 
a_VolTrack00-a_VolTrack31).  these are defined in the project-specific 
xxxVars.dsp file (where xxx is the project name). 
 
the last thing we need to do in GenFXIni_00.dsp is to configure the sequencer.  
search for 'a_Seq2' in this file.  note that there is already an initialization of 
the sequencer in this file.  this is done because Seq2 is automatically called 
(the actual call happens in ModFuncs_00.dsp) and a_Seq2 must hold valid data 
or many parts of SynDevKit will fail.  modify the pre-existing INIT_SEQ2 
macro such that it looks like this: 
     
  INIT_SEQ2(344, 0, 0, 1, ^DummyRet, ADSRENV, ^DummyRet); 
     
an explanation of the parameters is given below: 
 
  SEQ2_TRIGRATE  (344): 
    this parameter determines the number of 'krates' between incrementing the 
    trigger and volume pointers in the sequencer.  in this example we wanted 
    a squarewave to trigger every second.  this means that there must be 44100 
    samples between each triggering of the squarewave (because the samplerate 
    is 44.1kHz).  since we know the sequencer is called every 128 samples, this 
    means that this parameter must be equal to (44100/128=~344).  if we wanted 
    to trigger the squarewave every 0.5 seconds, this parameter would be equal 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 18 of 101 

    to 172.  a PC command-line program called timeconv.exe exists in the .\tools 
    directory, which is useful for performing conversions between krate and 
    BPM, and other operations.  for more information, refer to the chapter on 
    PC-based software. 
     
  SEQ2_SWINGPER  (0): 
    this is the swing period.  it is only used if there is swing (periodic 
    increase and decrease of the trigger rate) on the track.  it determines the 
    number of steps in the sequencer between the increased and decreased trigger 
    rate. 
     
  SEQ2_SWINGAMOUNT  (0): 
    this is the swing amount.  this value is added/subtracted to the trigger 
    rate at a rate determined by SEQ2_SWINGPER. 
     
  SEQ2_SEQLEN  (1): 
    this is the number of steps in a particular sequence.  the maximum length 
    of a sequence is set by the LENTRACK #define'd values in xxxdefs.h. 
    the default value is 128.  the sequence length can be any value between 1 
    and the LENTRACK value associated with that specific track. 
     
  SEQ2_INITFUNC  (^DummyRet) : 
    this parameter is a pointer to the function executed when this track 
    retriggers.  the envelope associated with this track is automatically 
    initialized by the sequencer when the track is retriggered.  however, it  
    might be necessary to perform some additional operations when the track 
    retriggers (ex: set a new frequency for the particular generator). 
     
  SEQ2_ENVTYPE  (ADSRENV): 
    the envelope type for this track. 
     
  SEQ2_AUXFUNC  (^DummyRet): 
    an auxilliary processing routine.  this function is called after the 
    envelope is re-initialized and can be used for other processing functions. 
    typically this parameter is left as a ^DummyRet. 
 
one last thing to note in GenFXIni_00.dsp is the SEQ2_SET_MEASURE macro.  
this sets the rate of SongCTRL-based changes to the length of the first track in 
the sequencer (344 krates, or ~1 second). 
 
now GenFXIni_00.dsp is properly initialized to generate a squarewave at 100Hz, 
pass it through an ADSR envelope, and retrigger it every 1 second.  the last thing 
to do is place the actual call WTGen2.  this is done in GenFX_00.dsp.  go to the 
location of /* insert generators and fx here */ in this file.  immediately after 
this comment, place the following code: 
 
  call WTGen2; 
  modify(I7, M7); 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 19 of 101 

     
the first instruction is self-explanatory - it calls the wavetable generator. 
the second instruction increments the I7 pointer by 1.  all signal generators 
write their output to the location I7 points to (and all FX processors work 
off of the data located at the location where I7 points to).  the modify 
instruct ion ensures that if another signal generator is called after this one, 
the output of that generator does not overwrite the value of the first one. 
 
also note that, while the ADSR is called in this function, it does not need to 
be explicitly placed in the file.  SynDevKit analyzes the parameters of a_Seq2 
(specifically the envelope type) and writes the appropriate opcodes to perform 
an ADSR envelope.  these opcodes are written into the 'nop;' array at ^Env in 
GenFX_00.dsp. 
 
and that's it!  easy! 
 
rebuild the project using the appropriate bat file (fb_chic or fb_ez81), being 
sure to include the project's name after the batch file on the command line. 
if everything works, a new .exe will be generated.  download the code to the 
DSP board (using ‘dl projname_chic.exe’ or ‘dl projname_ez81.exe’, with 
projname replaced with the actual project name of course), press IRQE, and 
(hopefully) listen to some squarewaves.  if nothing is heard (or the build 
didn't work properly), compare your copies of GenFXIni_00.dsp and GenFX_00.dsp 
to those in the 'ex1' project. 
 
(as an aside, SynDevKit uses the pressing of IRQE and a timer to seed a random 
number generator.  SynDevKit then writes 511 random values in a_RandLUT, which 
is used in a wide variety of functions.  essentially everywhere there is a read 
from I6, SynDevKit is fetching a random value.  after calculating these random 
values, SynDevKit begins initialization of generators and FX, and eventually 
starts writing data to its internal buffers.) 
 
at this point you can try experimenting with different parameters in the 
sequencer, ADSRPanEnv, or WTGen2 functions (such as modifying the frequency, 
wavetable pointer to one of the other wavetable arrays, pan, or trigger rate of 
the sequencer). 
 
the preceding steps cover most of the basic tasks required to get basic loops 
working on SynDevKit.  in summary, they are: 
 
  in GenFXIni: 
    1.  initialize all generators 
    2.  initialize an envelope for each generator 
    3.  initialize the TrigTrack and VolTrack buffers for each generator 
    4.  initialize each track of the sequencer for every generator 
  in GenFX: 
    5.  place the calls to generators in the appropriate order (track00 goes 
        first, etc etc) 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 20 of 101 

         
more advanced techniques of using SynDevKit will be covered in Part C. 
 
 
Part C:  creating multiple tracks, using FX, memory modifiers and SongCTRL 
 
this part of the tutorial is an explanation of project ex2.  while this song is 
far more complicated sounding than ex1, much of what constitutes this song is 
covered in the previous tutorial.  try building and running this project using 
the appropriate .bat file (either 'fb_dl_chic ex2' or 'fb_dl_ez81 ex2').  ok,  
now that you're bored of listening to this little loop, let's take a look at 
GenFXIni_00.dsp. 
 
at the beginning of this file, a number of initializations of generators is 
performed.  this song includes: 
 
  - two wavetable generators 
  - three karplus strong generators 
  - two probabilistic noise generators 
  - two FM synthesizers 
   
as previously noted, when more than one generator is required in a song, the 
initialiations must happen sequentially.  the three initializations of the 
karplus strong generator (INIT_KSGEN) are placed right after each other, 
without any SETPTR macros.  the SETPTR macro sets I2 equal to the address 
passed to it.  after the first INIT_KSGEN macro, I2 points to the right place 
for the second initialization of the a_KSGen buffer.  do not place another 
SETPTR macro between initialzations as the original parameter initializations 
will be overwritten.  also, be sure to always group together all initializations 
of a particular type. 
 
in this loop, the wavetable generator is used to create the basedrum sound, 
along with the fastest high lead.  the karplus strong generators make the 
pitched noise percussion sounds.  ProbSynthGen is used for the digital 
squarewaves which rise and fall in frequency.  lastly, FM2Op0Gen makes the bass 
and lead sounds.  while SynDevKit is capable of making an incredibly wide 
variety of sounds (both using traditional and unique synthesis techniques), this 
project demonstrates a good overview of some tricks used to make "normal" 
synthesizer sounds. 
 
bass drum: 
 
a common and simple method of creating a bass drum is with a low-pitch sine 
wave which is pitch-shifted downwards from the attack.  this is accomplished 
with an initialization of a wavetable generator (WTGen2) and a memory envelope 
(MemEnv3).  MemEnv3 applies an attack/decay envelope on a location in memory. 
the first initialzation of MemEnv3 in project ex2 applies a decaying pitch 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 21 of 101 

envelope to the first call to a_WTGen2.  here's the macro: 
 
  INIT_MEMENV3(^a_WTGen2+(0*WTGEN2_VARS)+WTGEN2_FREQ, 120, 120, 1, 0, 120); 
   
the first parameter indicates the address where the memory modification will 
be applied.  while it might me more succinct to write this as '^a_WTGen2' (since 
0*WTGEN2_VARS is zero, and WTGEB2_FREQ is also zero), it is recommended to 
use create offsets into parameter arrays using more explicit code.  this is true 
for a couple reasons: 
 
  1.  it helps future-proof your code.  if the frequency parameter changes 
      location in the a_WTGen2 array, this initialization would not need to 
      be changed. 
  2.  accesssing specific parameters in any array becomes a highly structued 
      operation.  for instance, accessing the next three WTGEN2_FREQ parameters 
      would be: 
       
      ^a_WTGen2+(1*WTGEN2_VARS)+WTGEN2_FREQ 
      ^a_WTGen2+(2*WTGEN2_VARS)+WTGEN2_FREQ 
      ^a_WTGen2+(3*WTGEN2_VARS)+WTGEN2_FREQ 
         
      in general, this method is used for accessing all gen_fx parameters. 
       
the next three parameters are the start attack value, end attack value, and the 
number of control rate tics between moving from the start to end frequency. 
the last two values are the end decay value and the number of control rate 
tics between moving from the end attack to end decay value.  in summary, this 
initialization of MemEnv3 causes the frequency of the first WTGen2 to go from 
120Hz-0Hz in 120 'krates' (approximates 350ms).  a couple things to note: 
 
  1.  MemEnv3 does not require the rate of change in the attack or decay 
      envelopes to be a whole number (ie in this case the rate is 1Hz/krate). 
      MemEnv3 uses division to calculate the proper rate of change, so 
      fractional rate changes are interpolated (ie a rate change of 1.5 would 
      lead to the parameter changing by 1, 2, 1, 2, etc). 
  2.  calls to MemEnv3 are automatically handled in ModFuncs_00.dsp  
      GenFXIni_00.dsp is processed by SynDevKit to determine the number of 
      initializations of MemEnv3, setting the v_NumMemEnv3 variable and making 
      the appropriate number of calls to MemEnv3. 
  3.  MemEnv3 must be reset every time the sequencer triggers a new hit on 
      that track.  this is handled with the RESET_MEMENV3 macro in 
      TrigInit_00.dsp.  this file will be covered in detail later in this tutorial. 
       
along with setting up the wavetable generator, an envelope should be initialized 
for the base drum.  while either an ADSR or and exponential decay envelop can 
be used, exponential decays are generally nicer sounding with base drums, along 
with being more computationally efficient.  the decay envelope for the base drum 
is: 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 22 of 101 

  INIT_EXPDECAYENV(4, 0x7ff0, 0x4000); 
   
the first parameter is the hold period for exponential decay.  in this case, 
a new exponential decay value is calculated every four samples.  the exponential 
decay value is 0x7ff0, and the output is center -panned.  remember, the decay 
value is in 1.15 format, so the largest value expected for that parameter is 
0x7fff.  the number 0x7ff0 is approximately equal to 0.9995.  therefore, every 
four samples, ExpDecayEnv multiplies its current internal scalar by 0.9995, 
and stores this newly calculated value as its new internal scalar, causing the 
output to decline 
 
hihat/pitched percussive noise: 
 
a common method of creating hihat/snare/percussive noises is with the karplus 
strong (KS) synthesizer.  there are actually 2 KS synths in SynDevKit: KSGen 
and ProbKSGen.  KSGen is a much simpler generator and suffers from saturation 
errors when the KSGEN_AVEFAC parameter is set above 0x4000. this makes KSGen 
less useful for pitched melodic sounds.  however, the overflow errors actually  
make KSGen useful for generating noises appropriate for drum synthesis 
(ProbKSGen can also be used for generating noises and can create many noises 
KSGen cannot, but at times KSGen is a better choice). 
 
the first two parameters generate the main hihat sound on the 2/4 beats.  the 
reason two hihats are generated is because one hihat is routed primarily to the 
left channel and the other to the right channel.  specifically, the two KSGen 
use the first two initializations of the INIT_ADSRPANENV macro: 
 
  INIT_ADSRPANENV(128, 0x7fff, 0x0010, 0x0000, 0, 0x0000, 0x1000); 
  INIT_ADSRPANENV(128, 0x7fff, 0x0010, 0x0000, 0, 0x0000, 0x7000); 
   
note that the only difference between these two initialzations is the pan 
parameter.  the first KS generator goes primarily to the left channel, while the 
second KS generator primiarly goes to the right channel.  this makes the sound 
much fuller and lifelike.  because the KS generators are fed from a noise 
buffer and the data in the noise buffer is always changing, there are small 
differences in output between each triggering of KSGen.  these small changes 
make multiple KS generators with the same parameters panned left and right 
sound much fuller than a single KS generator with a center -pan. 
 
the last KS generator creates the fast high-pitched noisy ticking sound.  unlike 
like the previous hihat sound, only 1 KS generator is used.  while a second KS 
generator would add to the overall sound, the ADSP-2181 ezkit does not have 
enough MIPS to handle this additional generator, along with all of the other 
generators required to make this loop.  this is a continual tradeoff in writing 
music in SynDevKit.  at times it can be frustrating, but it can also spur on 
creativity, as you need to work within certain processing constraints. 
 
this last KS generator is paired with another ADSRPanEnv with the same 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 23 of 101 

parameters as the previous ADSR envelopes, except that the ADSR output is 
center-panned. 
 
the last KS generator shows how to use an LFO with a generator.  the 3rd 
initialization of LFO3 is for this KS generator.  the parameters passed to this 
macro are: 
 
  INIT_LFO3(28, 39, ^a_WTSine, 0x8, 0x1f, ^a_KSGen+(2*KSGEN_VARS)+KSGEN_FREQ); 
   
similar to MemEnv3, LFO3 applies a modification to a particular memory location. 
the first two parameters set the hold period and frequency of the LFO.  in this 
case, the LFO is updated every 28 control rate tics.  the frequency parameter 
is equal to 39/128 Hz (approximately 0.3Hz).  this is rate that the LFO would 
run at if the first parameter was set to 1.  however, since it is set to 28, the 
LFO runs 28 times slower than that, or approximately 0.0109 Hz.  the next two 
parameters set the modulation amount and base value.  in this case, the maximum 
value is (0x1f+0x8=39) and the minimum value is (0x1f-0x8=23).  the last 
parameter is the location where the LFO'ed value is to be written.  in this 
case, it is written into the KSGEN_FREQ parameter of the 3rd KSGen generator. 
 
one very important thing to remember is that the LFO is actually applied to the 
4th value in its parameter list and then written to the specified location, rather 
than the LFO reading the specified location, applying an LFO to that value, 
and writing it back to that location.  this means that if a different base frquency 
is desired for the KS generator, it must be written into the LFO parameter list 
rather than the KSGen parameter list.  changing the parameter in KSGen will not 
do anything, as it will be overwritten the next time LFO3 executes. 
 
also remember that, similar to MemEnv3, LFO3 calls are automatically handled in 
ModFuncs_00.dsp.  the same general procedure is followed here, where the 
GenFXIni_00.dsp file is parsed and all INIT_LFO3 macros cause the v_NumLFO3 
variable to increment by one. 
 
lead/FM synthesizers: 
 
a total of three melodic synthesizers are used in this loop - two FM synths and 
one wavetable synth (which has an LFO and MemEnv assosciated with it to fake 
an FM synth). 
 
the FM synthesizer used in this loop is a simple 2 operator synth, where an 
audio rate signal is generated, passed through an ADSR envelope, and the output 
signal is used to modulate the carrier frequency.  FM synthesis is good for 
siumulating a wide variety of sounds (such as brass and reed instruments), and 
even better for creating new and interesting evolving sounds and textures.  two 
FM synths are declared, along with one ADSR for the long lower sounds, along 
with an exponential decay envelope for the shorter, middle-pitched sounds. 
 
the last melodic synthesizer is another wavetable generator with an LFO and 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 24 of 101 

memory envelope applied to the LFO modulation amount.  while this is not as 
full-featured as the FM synthesizer in SynDevKit, it is less expensive 
computationally and may be a useful configuration if MIPS are at premium.  a 
summary of how this last synthesizer works is given below: 
 
  1.  the basic synthesizer is WTGen2 (the 2nd initialization of WTGen2 sets up 
      this function call) 
  2.  in ModFuncs_00.dsp, MemEnv3 is called before LFO3.  therefore, the 2nd 
      MemEnv3 is called, which has its parameters set up to apply a memory 
      envolpe from 220-0 to the modulation amount of the 4th LFO3 call over 60 
      control rate tics. 
  3.  LFO3 is called.  the modulation frequency is (220*128) = 220Hz (remember 
      LFO3 is called at 1/128th the audio rate).  the modulation amount varies 
      from 220-0, due to the MemEnv3 call.  the base frequency of the modulator 
      is reset every time WTGen2 is retriggered by the sequencer and the target 
      memory location of LFO3 is the WTGEN2_FREQ parameter of the 2nd 
      WTGen2 call. 
       
additional noises: 
 
the last signal generator used in this loop is a probabilistic noise generator 
(ProbSynthGen).  this generator creates a random output with probabilities for 
the 8 MSBs to be set/cleared based on the parameters passed to the function. 
it also uses sample/hold to clamp the output to a simgle value for the number  
of samples specified by the first parameter.  in this case, the output is held 
for (128*42=5376) samples, and then a new output is generated.  why was this  
particualr value used?  the idea here was to have a noise which would be in sync 
with the other elements of the loop.  in particular, the base sequencer rate 
in this loop is 28 (0.081263 seconds).  therefore, the output of ProbSynthGen 
changes 1.5x slower than the base sequencer rate (28*1.5=42).  this adds an 
additional rhythmic element to the loop.  also, because the output values of 
ProbSynthGen are always changing (because the 8 MSBs are set in a probabilistic 
fashion), the rhythmic output constantly changes in timbre. 
 
the first FX function is also introduced with this track - the state-variable 
filter (SVFFX).  this function applies a simple 6db filter to the input signal, 
and can be configured for lowpass, highpass, bandpass, or notch outputs.  in 
this case, the filter is set to bandpass.  this makes ProbSynthGen fit better 
into the overall mix of the music, as ProbSynthGen tends to generate a lot of 
audio content across a wide range of frequencies (since ProbSynthGen is 
related to a square wave).  two LFOs are applied to parameters of the SVF. 
these two parameters control the cutoff/resonant frequency of the filter.  the 
LFOs runs twice as fast as the LFO used on the 3rd KS generator (because 
the hold period is 14 rather than 28).  the LFO on the bandpass filter causes 
the frequencies passed through the SVF to rise and fall slowly over time. 
 
one other interesting characteristic of this track is that the envelope applied 
to it has a decay rate of 0x0000.  this means that once the ADSR passes through 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 25 of 101 

the attack stage, it will be stuck in the decay stage until the track is 
triggered again.  this is a simple way of turning on a track for continuous 
sound. 
 
that is a description of all the sounds used in this loop.  the next section 
covers how the sequencer arrays are initialized to create the patterns heard 
in this loop. 
 
TrigTracks, VolTracks, CTRLTracks, TrigInit, and the sequencer: 
 
as previously mentioned, TrigTrack is used to control the probability that a 
track will be retriggered at that particular instant.  because the TrigTrack 
arrays are automatically init'ed to zero on reset, it is only necessary to set 
the locations that are supposed to be non-zero. 
 
let's take a closer look at the first track, which controls the base drum.  the 
code used for setting up the a_TrigTrack00 array is: 
 
  AR = 100; 
  ... 
  DM(a_TrigTrack00+0) = AR; 
  DM(a_TrigTrack00+16) = AR; 
  DM(a_TrigTrack00+20) = AR; 
  DM(a_TrigTrack00+28) = AR; 
   
also note that the first INIT_SEQ2 macro sets the length of the loop to 32. 
therefore, drawing this loop out, it would look like: 
 
  x------- -------- x---x--- ----x--- 
 
where the 'x' indicates where the basedrum is retriggered, and a ' -' shows where 
a note will not be retriggered.  the total time of this loop is 
(32*28*128)/44100 = 2.6 sec. 
 
along with initializing a_TrigTrack00, a_VolTrack00 must also be initialized. 
the code that takes care of this is: 
 
  AY0 = 0x2000; 
  ... 
  DM(a_VolTrack00+0) = AY0; 
  DM(a_VolTrack00+16) = AY0; 
  DM(a_VolTrack00+20) = AY0; 
  DM(a_VolTrack00+28) = AY0; 
 
the other elements of a_VolTrack00 need not be initialized, as it is not 
possible to trigger a new basedrum sound at any other location (all other 
a_TrigTrack00 values are zero). 
 
taking another look at the first initialization INIT_SEQ2, note how the first 
function pointer is no longer ^DummyRet, but rather InitBD0_00.  this function 
is called every time the note is retriggered.  normally, the file TrigInit_00.dsp 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 26 of 101 

holds all of the retrigger initialization functions.  opening this file, we can see 
that InitBD0_00 has the following code associated with it: 
 
InitBD0_00: 
    RESET_MEMENV3(0); 
    rts; 
 
the RESET_MEMENV3(0) macro resets the attack/decay envelope which is used to 
modify the frequency of the wavetable generator from 120Hz-0Hz.  if this macro 
was not included here, when the base drum retriggered, the frequency would be 
stuck at 0Hz, as MemEnv3 must be explicity reset. 
 
the next two tracks follow a similar pattern as the base drum.  each one sets 
a couple locations in its a_TrigTrack and a_VolTrack arrays to cause new snare 
drum hits at a specific volume, and each one calls a retriggering function to 
perform a particular operation.  in this case, InitKS0_00 and InitKS1_00 refill the 
noise buffer associated with that KS generator.  whenever a KS generator is 
retriggered, it is necessary to refill its noise buffer.  the functions 
FillKS0Buff-FillKS7Buff take care of this operation automatically. 
 
the third KS generator (4th track overall) has a slightly more complex 
initializations.  first, it uses a probability other than 100% for the hit at  
location DM(a_TrigTrack03+1).  it is set to 30.  this means that 30% of the time 
a new note will trigger at this location, and 70% it will not.  additionally, 
the VolTrack array is initialized with different values at location 0 and 
location 1. 
 
the sequencer also uses swing for this track.  the swing period is set to 4, 
and the swing amount is set to 3.  assuming a base period of 28, the time 
between tics in the sequencer for this track would be: 
 
  31, 31, 31, 31, 25, 25, 25, 25, 31, 31, 31, 31, 25, etc, etc 
   
note that after 8 steps through the sequencer, the total time elapsed is the 
same as if there were 8 steps at a rate of 28.  therefore, this track still 
runs at the same rate as another track without swing which has a rate a multiple 
of 28.  also note that this track has a sequence length of 2.  one of the more 
powerful features of SynDevKit is that each track can have a unique length. 
this makes it very easy to make long evloving loops from a few short sequences. 
in this case, the loop does not phase over time because 2 divides perfectly into 
32 (but if it had been equal to 3, 5, 6, 7 etc it would go out of phase and 
back in again). 
 
next, we have sequencer initializations for the first FM synthesizer and an 
introduction to control tracks.  control tracks are a method of modifying 
generator/fx parameters every time a track is retriggered.  one common use for 
control tracks is to change the pitch every time a track is retriggered.  first, 
we can see that the first FM synth has one initialization in a_TrigTrack04 & 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 27 of 101 

a_VolTrack04 (setting the probability to 100 and volume to 0x1000).  below the 
last trigger/volume initializations (for track 07) there are a series of macros 
for setting up the control track.  the first macro sets I2 equal to the address 
of ap_CTRLTrack04.  next, we initialize the first location of ap_CTRLTrack04 to 
be equal to the total number of control tracks (the maximum number is eight). 
in this case, the number of control tracks is equal to NUMCTRLTRACK04 (which is 
set to 1 in .\ex2\hdr\ex2def.h).  lastly, we include one INIT_AP_CTRLTRACK macro 
for each control track.  this macro writes the length of a_CTRLTrack04_0 into 
ap_CTRLTrack04, and then writes a pointer to the start of a_CTRLTrack04_0 into 
the next location of ap_CTRLTrack04.  in summary, these three macros perform the 
following operation: 
 
  I2 = ^ap_CTRLTrack04; 
  DM(I2, M1) = NUMCTRLTRACK04;          /* number of control tracks (1) */ 
  DM(I2, M1) = LENCTRLTRACK04_0;        /* length of 1st control track */ 
  DM(I2, M1) = a_CTRLTrack04_0;         /* ptr to head of 1st ctrl track */ 
   
the control track #define'd values are initialized in .ex2\hdr\ex2defs.h, and 
the control track arrays are defined in .\ex2\ex2Vars.dsp.  in the default  
configuration of SynDevKit, all of the NUMCTRLTRACK parameters are set to 
one.  if a control track is desired for a particular track, the approrpriate 
NUMCTRLTRACK should be set to the number of control tracks that will  
be associated with it.  next, the length of the control track needs to be set 
where the LENCTRLTRACK #define values are initialzied.  in this case,  
LENCTRLTRACK04_0 is set to 4, because there are 4 values in this control track. 
control tracks must be circular buffers - this means that once the last element 
of the control track is read, the next time the track is retriggered the first 
value from the control track will be read.  also note that control tracks need 
not be the same length as the sequencer track.  in this track, the control track 
is set to length 4, while the length of the sequence is 1. 
 
after the parameters are written into ap_CTRLTrack04, the actual control data 
can be written into a_CTRLTrack04_0.  in this example, the control track is 
designed to hold frequency information to be fed into the FM synthesizer every 
time it is retriggered.  this is handled by the following code: 
 
  I2 = ^a_CTRLTrack04_0; 
  AR = DM(a_MIDIFreq+C_3); 
  DM(I2, M1) = AR; 
  AR = DM(a_MIDIFreq+E_3); 
  DM(I2, M1) = AR; 
  AR = DM(a_MIDIFreq+G_3); 
  DM(I2, M1) = AR; 
  AR = DM(a_MIDIFreq+D_3); 
  DM(I2, M1) = AR; 
 
a_MIDIFreq is an 128 element array which holds frequency values for each MIDI 
value.  this code fetches the frequency for MIDI note C_3, E_3, G_3, and D_3. 
the '_3' values are defined in GenFX.h, and provide offsets into the MIDI 
frequency table. 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 28 of 101 

the 2nd FM synthesizer (track 05) and 2nd wavtable synthesizer (track 07) follow 
a similar initialization pattern to track 04.  first, the ap_CTRLTrack is set 
up following the same methodology used for track 04.  then the NUMCTRLTRACK 
and LENCTRLTRACK values are defined for the track.  lastly, the a_CTRLTrack 
values are written into the array. 
 
track 06 is the probabilistic noise generator.  note that since it is a 
continuous sound (the ADSR decay was set to 0x0000), the track is one one tic 
long.  the length of the sequence could be set to any value.  28*64 is just as good 
as 117 or anything else when the track is continually playing. 
 
one last thing to notice in GenFXIni is the usage of the SEQ2_SET_MEASURE 
macro.  this macro sets the length of a measure (which controls how fast the 
jump table in SongCTRL_00.dsp is parsed).  in this example, the length of a 
measure is set to the length of the first track (28*32 tics, or ~2.6 sec). 
it is also possible to set the length of a measure directly with the 
SET_TICS_PER_MEASURE macro. 
   
now that the initialization procedure has been covered, let's look at where 
the generators and FX are called - GenFX_00.dsp.  function call(s) are made 
for the appropriate generators and FX for each track, and when all processing 
is done for a particular track, a 'modify(I7, M7);' instruction is inserted 
between tracks.  remember, all generators and FX write their output to the 
address pointed to by I7 (and FX units read their input from that same location). 
note that there are eight tracks in this project, and there are eight calls to signal 
generators and eight modify instructions.  the order of the function calls must 
match the order given in the sequencer.  for instance, track 00 is set up to control 
the basedrum, and the call to WTGen2 is the first call in GenFX_00.dsp.  also note 
the first usage of FX in this function.  the call to ProbSynthGen is immediately  
followed by a call to SVFFX.  the output of ProbSynthGen is available for SVFFX 
to process.  also note that there are not any calls to MemEnv3 or LFO3 in 
this file.  those functions are automatically handled in ModFuncs_00.dsp, and 
should not be included here. 
 
one new file to consider in this project is TrigInit_00.dsp.  this file is 
designed to handle all of the retriggering functions (basically all of the 
function pointers in the sequencer array).  there are a series of entry points 
into small retriggering functions.  a brief explanation of what each of these 
functions do is given below: 
 
InitBD0_00: 
  the RESET_MEMENV3(0) macro is used to reset the internal state of the first 
  MemEnv3 initialization.  this sets up the attack/decay envelope to do another 
  120Hz-0Hz transition when the basedrum hit is retriggered. 
   
InitKS0_00: 
  FillKS0Buff loads a_KSBuff0 with random data.  whenever a KS generator is 
  retriggered, its noise buffer (typically a_KSBuff0-a_KSBuff7) must also be 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 29 of 101 

  initialized. 
 
InitKS1_00: 
  similar to InitKS0_00, but for the 2nd KS generator. 
   
InitKS2_00: 
  similar to InitKS0_00, but for the 3rd KS generator. 
   
InitFM0_00: 
  first, the RESET_FM2OP0GEN(0) macro is used to reset the internal state of 
  the FM synthesizer (specifically the state of the ADSR envelope used on the 
  modulating waveform).  next, the first location of a_CTRLData is read.  this 
  is where the control data initialized in a_CTRLTrack04_0 is made available to 
  retriggering functions.  the data from the first control track is always 
  written to a_CTRLData+0.  if additional control tracks are set up, their data 
  is made available in a_CTRLData+1, a_CTRLData+2, etc.  a_CTRLData is an eight 
  element array - therefore eight values can be passed from eight distinct 
  control tracks into a_CTRLData and be made available in retriggering.  after 
  the control data is read, it is written into the FM2OP0_BASECARR parameter 
  of the first FM synthesizer.  this sets a new carrier frequency for the FM 
  synthesizer every time the generator is retriggered. 
   
InitFM1_00: 
  this retriggering function follows the exact same pattern as InitFM0_00.  the 
  2nd FM synthesizer is initialized for retriggering via the RESET_FM2OP0GEN 
  macro.  next, the control data is read from a_CTRLData+0 and passed into the 
  FM2OP0_BASECARR parameter of the 2nd FM synthesizer. 
   
InitSine0_00: 
  this function first initializes the 2nd MemEnv3 envelope, which is tied to 
  the LFO3 which modifies the frequency of the 2nd wavtable generator.  next, 
  control data is read from a_CTRLData+0 and passed into the LFO3_BASE parameter 
  of the 4th LFO3 generator.  note that the frequency data is passed into the 
  LFO rather than the wavetable generator itself.  this is because the LFO is 
  controlling the output frequency of the 2nd wavetable generator and it does 
  not take into consideration any frequency data stored in the wavetable 
  generator parameters.  LFO3 completely sets the frequency of this generator. 
   
TrigInit allows for a lot of flexibility in how different signal generators are 
retriggered.  the basic retriggering requirements and recommendations are 
covered in the SynDevKit Generators, Effects, and Envelopes section of this document. 
however, beyond these basic suggestions, a wide variety of options are available 
here.  any number of modifications to SynDevKit parameters can happen here, 
including modifications to the TrigTrack and VolTrack arrays, generator and FX 
parameters, etc etc.  the example given here shows the most basic and common 
processing functions. 
   
lastly, let's look at SongCTRL_00.dsp.  this file is basically a codified method 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 30 of 101 

of applying changes to a song from measure to measure.  at the top of the file 
there is a counter loop which increments v_TicCNTR and checks to see if it is 
equal to v_TicsPerMeasure.  if not, the function immediately exits.  if it is 
equal, control passes further into SongCTRL.  v_TicsPerMeasure is the parameter 
which is set by the SEQ2_SET_MEASURE and SET_TICS_PER_MEASURE macros. 
 
next, v_CurrMeasure is used to provide an offset into Measure_JT, which 
determines which function in the jumptable is executed.  the first time 
SongCTRL is entered, MuteFMLead1 is called (because v_CurrMeasure is set to 
zero on reset), and the code at this location is run.  the code at MuteFMLead1 
mutes the 6th track, which happens to be one of the FM synthesizers.  after 
muting this track, EndSongCheck is executed.  this increments v_CurrMeasure and 
checks if it is larger than the total measures in the song (v_MeasuresPerSong, 
set by analyzing the distance between Measure_JT and EndMeasure_JT).  if we're 
not at the end of the measures, SongCTRL is exited.  if we are, v_CurrMeaure 
is reset to zero.  this forces the song to start over again at the beginning 
(note that it will not perform the full re-initialzation of generator/fx parameters in 
GenFXIni_00.dsp, so the song may not sound the same on subsequent times 
through the jumptable). 
 
the next three times the jumptable is accessed, the code at DoNothing is 
executed, which, as expected, does nothing.  it simply goes to EndSongCheck, 
increments v_CurrMeasure, and performs the check for the end of the song.  in 
the 5th measure UnMuteFMLead1 is executed, which unmutes the 2nd FM synth. 
measures 6-8 do nothing.  once the last DoNothing is executed, v_CurrMeasure is 
set to zero and the next time Measure_JT is accessed, MuteFMLead1 is executed. 
this is how this loop plays indefinitely.  the total time to traverse all eight 
measures is (8*2.6) = 20.8 seconds. 
 
this is a very comprehensive description of the ex2 project.  while there 
certainly is a lot to remember, it is probably easiest to learn more about  
SynDevKit by making small changes to different parameters and hearing the 
effects of these changes, be they pleasant, unpleasant, or nothing is heard at 
all.  this example should provide ideas on how to make your own songs and some 
of the built in methods and infrastructure for making writing music with 
SynDevKit as easy as possible. 
 
one very important thing to remember is that one of the defining features of 
SynDevKit is that it allows access to parameters that are normally not available 
in other modular synthesis packages and that there is an extreme level of 
flexibility available when working at such a low level.  however, with this 
flexibilty comes the opportunity to cause horrible crashes of the environment 
with even simple changes to the code.  learn which rules can be broken and which 
cannot. 
 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 31 of 101 

Part D:  using SETTRACK and trackparse1.pl 
 
in Part C we saw how to create a fairly complicated loop using direct  
initializations of the TrigTrack and VolTrack arrays.  along with this direct  
method of initializing the sequencer, SynDevKit provides for a more symbolic 
approach.  this is accomplished with the SETTRACK preprocessing directive 
and trackparse1.pl.  an example of how this macro is used is in project ex3. 
this project generates a simple rhythmic loop using two kick drums, one high 
pitched sawwave, two filtered noise generators, and four karplus-strong 
generators.  the initializations for these functions are placed in GenFXIni_00.dsp. 
however, before considering trackparse1.pl, let’s look a bit closer at the 
initializations of the generators, fx, and memory envelopes.  one thing to note 
in the function initializations is the introduction of MemEnv2, which is a 
multi-stage exponential decay memory envelope.  while this function serves 
many purposes.  one very important reason for its inclusion into SynDevKit 
is that this sort of memory envelope is very useful for controlling the frequency 
of kick drums.  a decent kick drum can be modeled with a sine wave with a 
multi-stage exponential decay memory envelope on the frequency parameter. 
the ex3 project uses two such memory envelopes with slightly different 
parameters for each kick drum.  the first kick drum has a frequency which decays 
between 700Hz and 20Hz, while the second kick drum’s frequency decays between 
400Hz and 20Hz.  note how the decay constant varies between 0x6400 for the first 
stage and 0x7f80 for the last constant.  this means that the frequency of the 
drum will decay very quickly at first, and as the frequency lowers the rate of 
decay quickly slows down.  for more information on how MemEnv2 works refer 
to the MemEnv2 section of the SynDevKit Generators, FX, and Envelopes section 
of this document. 
 
another important thing to note is that there aren’t any TrigTrack and VolTrack 
initializations in GenFXIni.  after the initializations of the SynDevKit functions 
the sequencer initializations occur.  while it is mandatory to place all of these 
initializations inside GenFXIni, the TrigTrack and VolTrack arrays do not have 
such a dependency.  in this case the initializations are placed in SongCTRL_00.dsp. 
in most cases where something more complicated than a basic loop is being 
written, SongCTRL is where initializations to the TrigTrack and VolTrack arrays 
belong.  the initialization of these arrays is handled by the SETTRACK macro, 
which can be found on line 115. 
 
before moving to an explanation of the SETTRACK macro it is important to 
understand how SETTRACK is handled by SynDevKit.  before all the DSP files 
are assembled and linked into an executable, trackparse1.pl is run on all files 
in the target project directory.  trackparse1.pl looks for all instances of 
SETTRACK and replaces them with the apprpriate DSP code.  SETTRACK is not 
handled by the assembler!  this is why SETTRACK is placed within comments. 
the assembler does not know how to handle SETTRACK and an assembly error 
would be reported if it was not placed in comments. 
 
once SETTRACK is found and trackparse1.pl creates the appropriate DSP file, 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 32 of 101 

it creates a new file with the same filename as the parsed file but with a 
“parsed_” prepended to it.  for instance, if the SETTRACK marco was written 
to SongCTRL_00.dsp, trackparse1.pl would create a new file called 
parsed_SongCTRL00.dsp which would contain the initializations as derrived by 
trackparse1.pl.  note that trackparse1.pl does not modify the original file in 
any way.  it only creates new files with the proper code inserted into them. 
because of this, if a file has a SETTRACK macro in it, the .mak file for the 
project must be modified such that SynDevKit uses the “parsed_” version of the 
file.  (note that in a future release of SynDevKit the .mak file will be modified 
automatically and the documentation will reflect this update).  one other thing 
to note about how SynDevKit uses trackparse1.pl is that, prior to any 
processing by trackparse1.pl, all files in the target project directory which 
start with “parsed_” are deleted.  this is done to avoid reprocessing already - 
processed DSP files.  therefore, any changes that need to be made to files 
which contain SETTRACK should be made in the original file, not the “parsed_” 
file. 
 
the SETTRACK macro creates a simple interface to the TrigTrack and VolTrack 
arrays by providing a symbolic (almost graphical) view of initializations of 
the various tracks in a song.  the first nine lines of the SETTRACK macro 
determine exactly which locations of the TrigTrack and VolTrack arrays will be 
initialized.  each track has one line devoted to it, and requires four parameters. 
the first parameter determines if the TrigTrack and VolTrack arrays are cleared 
before the new data from the SETTRACK macro is written into them.  this is 
used for choosing between incremental changes (by setting the first parameter 
to NOCLEAR) or a completely new initialization (by setting the first parameter 
to CLEAR) to the sequencer arrays.  the second parameter sets the offset into 
the TrigTrack/VolTrack arrays.  normally this parameter is set to zero.  however, 
if you are splitting a single TrigTrack/VolTrack into multiple smaller arrays 
this allows for providing an automatic offset to simplify the initialization 
process.  the next parameter determines which track will receive the 
initialization data.  in this case, all 9 tracks are initialized in sequential 
order.  however, any number of tracks can be initialized in any order that is 
desired.  additionally, the actual locations of where the TrigTrack/VolTrack 
initialzations will be placed are specified.  for example, in track00, there 
will be a TrigTrack/VolTrack initialization at offsets 0, 16, and 28.  track01 
has initializations at offsets 8, 14, and 24.  all locations which have a dash 
(‘-‘) are not initialized.  also note that any combination of symbols can be 
used in a single track.  for instance track00 could have “a”, “b”, and “c” 
initializations within it.  it just happens that this loop uses the same letters 
for each track.  lastly, it is important to note that the number of 
initializations in a track line does not affect the sequencer parameter which 
controls the actual length of the track.  for instance, if 16 initializations 
are made in SETTRACK for a particular track but the sequencer data only 
indicates that the length of the track is 8 steps, the last 8 initializations 
will be ignored. 
 
after the nine lines which determine where sequencer initializations will 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 33 of 101 

happen, there are six lines which set the actual initialzation values for 
each of the tracks.  for instance, the line “a, 100, 0x3000” means that every 
location where there is an “a” in the code will have a TrigTrack setting of 
100 and a VolTrack setting of 0x3000.  the same basic procedure is followed 
for each of the symbols in the sequencer initialization. 
 
the last line of SETTRACK must be ‘END); */’. 
 
when this file is parsed by trackparse1.pl, the output is written to 
parsed_SongCTRL00.dsp.  the actual code that was generated is written starting 
at line 115, and is listed below: 
 
/* 
 *  autogenerated code for SETTRACK macro 
 */ 
    I2 = ^a_TrigTrack00; 
    I3 = ^a_VolTrack00; 
    CNTR = 128; 
    do CL00114 until CE; 
        DM(I2, M1) = 0; 
CL00114:   DM(I3, M1) = 0; 
 
    I2 = ^a_TrigTrack01; 
    I3 = ^a_VolTrack01; 
    CNTR = 128; 
    do CL01114 until CE; 
        DM(I2, M1) = 0; 
CL01114:   DM(I3, M1) = 0; 
 
    I2 = ^a_TrigTrack02; 
    I3 = ^a_VolTrack02; 
    CNTR = 128; 
    do CL02114 until CE; 
        DM(I2, M1) = 0; 
CL02114:   DM(I3, M1) = 0; 
 
    I2 = ^a_TrigTrack03; 
    I3 = ^a_VolTrack03; 
    CNTR = 128; 
    do CL03114 until CE; 
        DM(I2, M1) = 0; 
CL03114:   DM(I3, M1) = 0; 
 
    I2 = ^a_TrigTrack04; 
    I3 = ^a_VolTrack04; 
    CNTR = 128; 
    do CL04114 until CE; 
        DM(I2, M1) = 0; 
CL04114:   DM(I3, M1) = 0; 
 
    I2 = ^a_TrigTrack05; 
    I3 = ^a_VolTrack05; 
    CNTR = 128; 
    do CL05114 until CE; 
        DM(I2, M1) = 0; 
CL05114:   DM(I3, M1) = 0; 
 
    I2 = ^a_TrigTrack06; 
    I3 = ^a_VolTrack06; 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 34 of 101 

    CNTR = 128; 
    do CL06114 until CE; 
        DM(I2, M1) = 0; 
CL06114:   DM(I3, M1) = 0; 
 
    I2 = ^a_TrigTrack07; 
    I3 = ^a_VolTrack07; 
    CNTR = 128; 
    do CL07114 until CE; 
        DM(I2, M1) = 0; 
CL07114:   DM(I3, M1) = 0; 
 
    I2 = ^a_TrigTrack08; 
    I3 = ^a_VolTrack08; 
    CNTR = 128; 
    do CL08114 until CE; 
        DM(I2, M1) = 0; 
CL08114:   DM(I3, M1) = 0; 
 
    /* inits for a */ 
    AX0 = 100; 
    AX1 = 0x3000; 
    DM(a_TrigTrack00+0+0) = AX0; 
    DM(a_VolTrack00+0+0) = AX1; 
    DM(a_TrigTrack00+0+16) = AX0; 
    DM(a_VolTrack00+0+16) = AX1; 
    DM(a_TrigTrack00+0+28) = AX0; 
    DM(a_VolTrack00+0+28) = AX1; 
 
    /* inits for b */ 
    AX0 = 100; 
    AX1 = 0x2000; 
    DM(a_TrigTrack01+0+8) = AX0; 
    DM(a_VolTrack01+0+8) = AX1; 
    DM(a_TrigTrack01+0+14) = AX0; 
    DM(a_VolTrack01+0+14) = AX1; 
    DM(a_TrigTrack01+0+24) = AX0; 
    DM(a_VolTrack01+0+24) = AX1; 
 
    /* inits for c */ 
    AX0 = 100; 
    AX1 = 0x0600; 
    DM(a_TrigTrack02+0+4) = AX0; 
    DM(a_VolTrack02+0+4) = AX1; 
    DM(a_TrigTrack02+0+20) = AX0; 
    DM(a_VolTrack02+0+20) = AX1; 
    DM(a_TrigTrack02+0+30) = AX0; 
    DM(a_VolTrack02+0+30) = AX1; 
 
    /* inits for d */ 
    AX0 = 100; 
    AX1 = 0x0100; 
    DM(a_TrigTrack03+0+2) = AX0; 
    DM(a_VolTrack03+0+2) = AX1; 
    DM(a_TrigTrack04+0+2) = AX0; 
    DM(a_VolTrack04+0+2) = AX1; 
    DM(a_TrigTrack03+0+8) = AX0; 
    DM(a_VolTrack03+0+8) = AX1; 
    DM(a_TrigTrack04+0+8) = AX0; 
    DM(a_VolTrack04+0+8) = AX1; 
    DM(a_TrigTrack03+0+16) = AX0; 
    DM(a_VolTrack03+0+16) = AX1; 
    DM(a_TrigTrack04+0+16) = AX0; 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 35 of 101 

    DM(a_VolTrack04+0+16) = AX1; 
    DM(a_TrigTrack03+0+24) = AX0; 
    DM(a_VolTrack03+0+24) = AX1; 
    DM(a_TrigTrack04+0+24) = AX0; 
    DM(a_VolTrack04+0+24) = AX1; 
    DM(a_TrigTrack03+0+26) = AX0; 
    DM(a_VolTrack03+0+26) = AX1; 
    DM(a_TrigTrack04+0+26) = AX0; 
    DM(a_VolTrack04+0+26) = AX1; 
    DM(a_TrigTrack03+0+28) = AX0; 
    DM(a_VolTrack03+0+28) = AX1; 
    DM(a_TrigTrack04+0+28) = AX0; 
    DM(a_VolTrack04+0+28) = AX1; 
 
    /* inits for e */ 
    AX0 = 100; 
    AX1 = 0x2000; 
    DM(a_TrigTrack05+0+8) = AX0; 
    DM(a_VolTrack05+0+8) = AX1; 
    DM(a_TrigTrack06+0+8) = AX0; 
    DM(a_VolTrack06+0+8) = AX1; 
    DM(a_TrigTrack05+0+24) = AX0; 
    DM(a_VolTrack05+0+24) = AX1; 
    DM(a_TrigTrack06+0+24) = AX0; 
    DM(a_VolTrack06+0+24) = AX1; 
 
    /* inits for f */ 
    AX0 = 100; 
    AX1 = 0x1800; 
    DM(a_TrigTrack07+0+0) = AX0; 
    DM(a_VolTrack07+0+0) = AX1; 
    DM(a_TrigTrack08+0+0) = AX0; 
    DM(a_VolTrack08+0+0) = AX1; 
    DM(a_TrigTrack07+0+2) = AX0; 
    DM(a_VolTrack07+0+2) = AX1; 
    DM(a_TrigTrack08+0+2) = AX0; 
    DM(a_VolTrack08+0+2) = AX1; 
    DM(a_TrigTrack07+0+4) = AX0; 
    DM(a_VolTrack07+0+4) = AX1; 
    DM(a_TrigTrack08+0+4) = AX0; 
    DM(a_VolTrack08+0+4) = AX1; 
    DM(a_TrigTrack07+0+6) = AX0; 
    DM(a_VolTrack07+0+6) = AX1; 
    DM(a_TrigTrack08+0+6) = AX0; 
    DM(a_VolTrack08+0+6) = AX1; 
    DM(a_TrigTrack07+0+12) = AX0; 
    DM(a_VolTrack07+0+12) = AX1; 
    DM(a_TrigTrack08+0+12) = AX0; 
    DM(a_VolTrack08+0+12) = AX1; 
    DM(a_TrigTrack07+0+14) = AX0; 
    DM(a_VolTrack07+0+14) = AX1; 
    DM(a_TrigTrack08+0+14) = AX0; 
    DM(a_VolTrack08+0+14) = AX1; 
    DM(a_TrigTrack07+0+16) = AX0; 
    DM(a_VolTrack07+0+16) = AX1; 
    DM(a_TrigTrack08+0+16) = AX0; 
    DM(a_VolTrack08+0+16) = AX1; 
    DM(a_TrigTrack07+0+18) = AX0; 
    DM(a_VolTrack07+0+18) = AX1; 
    DM(a_TrigTrack08+0+18) = AX0; 
    DM(a_VolTrack08+0+18) = AX1; 
    DM(a_TrigTrack07+0+19) = AX0; 
    DM(a_VolTrack07+0+19) = AX1; 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 36 of 101 

    DM(a_TrigTrack08+0+19) = AX0; 
    DM(a_VolTrack08+0+19) = AX1; 
    DM(a_TrigTrack07+0+20) = AX0; 
    DM(a_VolTrack07+0+20) = AX1; 
    DM(a_TrigTrack08+0+20) = AX0; 
    DM(a_VolTrack08+0+20) = AX1; 
    DM(a_TrigTrack07+0+22) = AX0; 
    DM(a_VolTrack07+0+22) = AX1; 
    DM(a_TrigTrack08+0+22) = AX0; 
    DM(a_VolTrack08+0+22) = AX1; 
    DM(a_TrigTrack07+0+26) = AX0; 
    DM(a_VolTrack07+0+26) = AX1; 
    DM(a_TrigTrack08+0+26) = AX0; 
    DM(a_VolTrack08+0+26) = AX1; 
    DM(a_TrigTrack07+0+28) = AX0; 
    DM(a_VolTrack07+0+28) = AX1; 
    DM(a_TrigTrack08+0+28) = AX0; 
    DM(a_VolTrack08+0+28) = AX1; 
    DM(a_TrigTrack07+0+30) = AX0; 
    DM(a_VolTrack07+0+30) = AX1; 
    DM(a_TrigTrack08+0+30) = AX0; 
    DM(a_VolTrack08+0+30) = AX1; 
    DM(a_TrigTrack07+0+31) = AX0; 
    DM(a_VolTrack07+0+31) = AX1; 
    DM(a_TrigTrack08+0+31) = AX0; 
    DM(a_VolTrack08+0+31) = AX1; 
 
as you can see, SETTRACK greatly simplifies the initialization of 
TrigTrack/VolTrack arrays, especially when specific rhythms are desired and 
they are not to be generated in an algorithmic/generative fashion.  a couple 
further things to note about SETTRACK: 
 
    * it is possible to have more than one SETTRACK macro in a file. 
    * the syntax of SETTRACK is flexible in some ways and inflexible in others. 
      to be safe, the example given above should be followed as much as possible 
      in your own code.  specifically, trackparse1.pl requires that the start 
      and stop comments (‘/* and ‘*/’) must be placed on the line with SETTRACK 
      and on the last line of the macro.  SETTRACK is rather flexible in how to 
      construct the lines the sequencer initializations for a particular track. 
      SETTRACK ignores whitespace, so it is possible to split the dashes and 
      symbols in any way that is logical for a particular sequence.  also note 
      that SETTRACK is case sensitive, meaning that you could use a lowercase 
      letter for normal initializations and the uppercase equivalent for accents 
      in that track. 
 
additional information on trackparse1.pl is given in the trackparse1.pl  section 
of the SynDevKit PC Sotware  chapter of this document. 
 
the rest of the ex3 project follows the same basic guidelines covered in ex2. 
 
Part E:  placing multiple songs in a single .exe 
 
- using endsong, songptrs 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 37 of 101 

 
Part F:  advanced synthesis and sequencing techniques 
 
- multiple control tracks 
- multigen 
- syncing two tracks 
- using memenv3 with sequencer 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 38 of 101 

SynDevKit Generators, Effects, and Envelopes 
 
this chapter describes all of the various functions of SynDevKit.  a wide 
array of signal generators, effects, and envelopes are provided in this 
package.  while the tutorial covers how functions can be used and exactly 
where they should be used, this chapter covers all of the possible sound 
generation, modification and sequencing options built into this package. 
 
also note that, in the description of the parameters for the SynDevKit 
functions all parameters, both visible and hidden by the macro 
initializations, are described.  the parameters which are normally hidden 
by the macro call are displayed in italics.  it is not necessary to understand 
how these parameters function for normal usage of these functions.  these 
parameters and their description is inculded in case special usage of these 
functions is desired. 
 
random numbers and SynDevKit 
 
    while not a signal generator, approximate white noise/equally distributed 
    random numbers are always available by accessing the buffer (a_RandLUT) 
    pointed to by I6.  this register should never be set to another memory 
    location as it is assumed to be pointing to random data at all times. 
     
    this noise buffer is 511 elements long and is partially re-randomized every 
    128 samples (at the krate).  when the buffer is re-randomized, certain 
    values are filtered out of the random stream.  these values are (0x0000, 
    0x7fff, 0x8000, 0x8001).  this is done to make random boundary checking for 
    certain functions easier to manage. 
 
    a_RandLUT can also be used in conjunction with wavetable-based LFOs for 
    random LFO outputs. 
     
    the simplest way to generate white noise is to write the following in 
    GenFX_00.dsp: 
     
    AR = DM(I6, M7);  /* read random number, I6++ */ 
    DM(I7, M6) = AR;  /* write to out array */ 
 
    /* place FX functions here (filters, etc) */ 
    modify(I7, M7);   /* prepare for next sample, I7++ */ 
       
    it is also possible to use a_RandLUT with WTGen/WTGen2.  this would only be 
    interesting if the frequency of the generator is set lower than 344 Hz, as 
    it should lead to an essentially lowpass filtered noise (because the noise 
    buffer is read slower than one element per sample, and there is linear 
    interpolation between noise samples). 
 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 39 of 101 

making multiple calls to the same function 
 
    the number of function initializations/calls of a particular generator or 
    effect is set by the xxx_CALLS #define associated with each function in 
    GenFX.h.  for example, in the default build of SynDevKit, 8 BitmaskFX 
    function calls can be safely made (because BITMASKFX_CALLS is defined as 
    8).  the BITMASK_CALLS and BITMASK_VARS values are used in GenFXVar.dsp to 
    determine the total size of the a_BitmaskFX array.  if more calls are 
    required than are allocated for in GenFX.h, increase the xxx_CALLS parameter 
    accordingly.  additionally, if a function is not being used and you are 
    running out of data memory for your project, the xxx_CALLS parameter can 
    be reduced appropriately. 
 
 
datatypes and expected ranges 
 
    the ADSP-218x processor is designed to handle 16bit fixed-point data.  a full 
    discussion and explanation of fixed-point datatypes is bey ond what i want 
    to get into here.  one resource for understanding the basics of fixed- 
    point math and datatypes is here: 
     
      http://www.analog.com/Analog_Root/static/library/dspManuals/pdf/ 
            fum_Appendix_C.pdf 
     
    other resources for fixed point math are available online. 
     
    in general, SynDevKit uses 16bit, 1.15 datatypes for its mathematical 
    operations.  the output of signal generators is assumed to be in 1.15 
    format, and most internal processing occurs in this format.  this means that 
    if a number is expected to be positive (for example, the attack rate on 
    an ADSR envelope), it should be set between 0x0000-0x7fff.  values between 
    0xffff-0x8000 are negative numbers in 1.15 format and should not be used. 
    there are also times when 16.0 format is used to represent data.  usually 
    this is obvious.  for instance, the values used in the sequencer to set  
    probabilities of generator retriggering should be between 0-100, standing 
    for 0%-100% trigger rates. 
     
    also, there are a couple generators and fx which use 16.16 format for 
    representing 32bit input parameters.  this means that least significant word 
    is unsigned 0.16 format and the most significant word is 16.0 signed format. 
     
    the expected range values in the tables below give the values that 
    parameters can be that should not cause SynDevKit to crash.  however, this 
    does not mean that the output with parameters set to these values will 
    necessarily be useful or even audible.  however, experimentation is one of 
    the keys to getting interesting results with SynDevKit, so feel free to try 
    breaking whatever rules or suggestions provided below.  just be sure to 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 40 of 101 

    turn down your amplifier first! 
 
function name: 
 
    ADSRPanEnv 
 
file name: 
 
    ADSRPan.dsp 
 
associated variables and functions: 
 
    a_ADSRPanEnv/p_ADSRPanEnv - parameters for ADSR envelope + pan 
 
parameter definition: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
initialization example: 
 
/* 
 *  init ADSR for 128 samples between updates, 0x100 attack increment, 
 *  0x200 decay decrement, sustain height of 0x2000, sustain period of 
 *  100*128 samples, release rate of 0x4 and center-focused sound 
 */ 
    SETPTR(a_ADSRPanEnv); 
    INIT_ADSRPANENV(128, 0x0100, 0x0200, 0x2000, 100, 0x0004, 0x4000); 
         
retrigger initialization information: 
     
    if an ADSR envelope is attached to a signal generator with Seq2 then the ADSR 
    is re-inited automatically.  if a custom retriggering mechanism is used, the 
    following memory locations must be reset: 
     

parameter description expected value 
   
ADSRPANENV_UR ADSR update rate 0x0000-0x7fff 
ADSRPANENV_RC internal ADSR rate counter 0x0000-0x7fff 
ADSRPANENV_INTSCALAR internal ADSR envelope value 0x0000-0x7fff 
ADSRPANENV_STAGE internal ADSR stage 0x0000-0x0003 
ADSRPANENV_ATTACKRATE ADSR attack increment value 0x0000-0x7fff 
ADSRPANENV_DECAYRATE ADSR decay decrement value 0x0000-0x7fff 
ADSRPANENV_DECAYMIN ADSR decay minimum 0x0000-0x7fff 
ADSRPANENV_SUSTAINLEN ADSR sustain time 0x0000-0x7fff 
ADSRPANENV_SUSTAINCNT internal ADSR sustain counter 0x0000-0x7fff 
ADSRPANENV_RELRATE ADSR release rate 0x0000-0x7fff 
ADSRPANENV_SCALAR ADSR scalar 0x0000-0x7fff 
ADSRPANENV_PAN ADSR pan 0x0000-0x7fff 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 41 of 101 

    a_ADSRPanEnv + ADSRPANENV_RC 
    a_ADSRPanEnv + ADSRPANENV_INTSCALAR 
    a_ADSRPanEnv + ADSRPANENV_STAGE 
    a_ADSRPanEnv + ADSRPANENV_SUSTAINCNT 
     
misc information: 
 
    ADSRPanEnv is a standard ADSR envelope along with a signal panning control 
    mechanism.  the range of the pan paramet er is from 0x0000-0x7fff.  0x0000 
    is an all-left pan, 0x4000 sends the output to both channels equally and 
    0x7fff is an all-right pan.  pan is implemented in a simple linear fashion. 
     
    the rate control (a_ADSRPanEnv+ ADSRPANENV_UR) is useful for smoothing 
    fast moving ADSRs.  if the ADSR update rate is set too high, a zipper-like 
    sound can be heard along with the controlled signal.  to minimize this noise 
    reduce the rate control value to move the ADSR "steps" closer together.  note 
    that the ADSR does not update itself on a sample by sample basis - instead it 
    only updates its output when the internal rate counter equals the selected 
    rate.  therefore, the ADSR scalar is a ‘stairstep’ value, which can lead to 
    some distortion. 
     
    when using a sequencer with the ADSRPanEnv envelope the sequencer must be 
    init'ed with the ADSRENV envelope type to tie the specified track to the 
    proper envelope.  for more information, refer to the documentation on the 
    Seq2 processing element. 
 
 
function name: 
 
    AlgoSineGen 
    AlgoSineSatGen 
     
file name: 
 
    AlgoSine.dsp 
    AlgoSineSat.dsp 
 
associated variables: 
 
    a_AlgoSineGen/p_AlgoSineGen - parameters for AlgoSine function 
    a_AlgoSineSatGen/p_AlgoSineSatGen - parameters for AlgoSineSat function 
    a_AlgoSineCoeff - "standard" coefficients for AlgoSineGen/AlgoSineSatGen 
    a_MIDIFreq[128] - array of MIDI frequencies 
 
parameter definition: 
 
  AlgoSineGen 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 42 of 101 

 
parameter description expected value 
   
ALGOSINEGEN_PHASEINC frequency 0x0000-0x7fff 
ALGOSINEGEN_CURRPHASE internal current phase 0x0000-0xffff 
ALGOSINEGEN_COEFF0 coefficient 0 0x0000-0xffff 
ALGOSINEGEN_COEFF1 coefficient 1 0x0000-0xffff 
ALGOSINEGEN_COEFF2 coefficient 2 0x0000-0xffff 
ALGOSINEGEN_COEFF3 coefficient 3 0x0000-0xffff 
ALGOSINEGEN_COEFF4 coefficient 4 0x0000-0xffff 
 
  AlgoSineSatGen 
 
parameter description expected value 
   
ALGOSINESATGEN_PHASEINC frequency 0x0000-0x7fff 
ALGOSINESATGEN_CURRPHASE internal current phase 0x0000-0x7fff 
ALGOSIN ESATGEN_COEFF0 coefficient 0 0x0000-0xffff 
ALGOSINESATGEN_COEFF1 coefficient 1 0x0000-0xffff 
ALGOSINESATGEN_COEFF2 coefficient 2 0x0000-0xffff 
ALGOSINESATGEN_COEFF3 coefficient 3 0x0000-0xffff 
ALGOSINESATGEN_COEFF4 coefficient 4 0x0000-0xffff 
     
initialization example: 
 
    /* 100 Hz sinewave for AlgoSine */ 
    SETPTR(a_AlgoSine); 
    INIT_ALGOSINEGEN(100, 0x3240, 0x0053, 0xAACC, 0x08B7, 0x1CCE); 
     
    /* 100 Hz sinewave for AlgoSineSat */ 
    SETPTR(a_AlgoSineSat); 
    INIT_ALGOSINESATGEN(100, 0x3240, 0x0053, 0xAACC, 0x08B7, 0x1CCE); 
 
retrigger initialization information: 
 
    when retriggering either AlgoSineGen or AlgoSineSatGen, it may be desirable 
    to reset the phase.  if this is not done, an offset impulse at the start of 
    the signal might be heard, depending on the phase and envelope type.  the 
    follow macros are provided for resetting the phase of these two generators: 
     
    /* reset phase of 1st call to AlgoSineGen */ 
    RESET_PHASE_ALGOSINEGEN(0); 
     
    /* reset phase of 4th call to AlgoSineSatGen */ 
    RESET_PHASE_ALGOSINESATGEN(4); 
     
    additionally, macros are provided to load control data (loaded from a 
    CTRLTrack to a_CTRLData) into the frequency parameter of the AlgoSine 
    fucntions.  macros are provided for loading a direct frequency value and 
    for loading a frequency based on a MIDI note number: 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 43 of 101 

     
    /* load 3rd AlgoSineGen with freq data in a_CTRLData+1 */ 
    CTRLDATA_TO_ALGOSINEGEN_FREQ(1, 2); 
     
    /* load 5th AlgoSineGen with MIDI note data in a_CTRLData+2 */ 
    CTRLDATA_TO_ALGOSINEGEN_FREQ_MF(2, 4); 
     
    /* load 1st AlgoSineSatGen with freq data in a_CTRLData+4 */ 
    CTRLDATA_TO_ALGOSINESATGEN_FREQ(4, 0); 
     
    /* load 2nd AlgoSineSatGen with MIDI note data in a_CTRLData+0 */ 
    CTRLDATA_TO_ALGOSINESATGEN_FREQ_MF(0, 1); 
 
misc information: 
 
    AlgoSineGen is a taylor-series approximation of a sinewave.  additional 
    harmonics can be generated by modifying the coefficients.  however, beyond 
    a certain point saturation occurs.  if this is not desireable, AlgoSineSat 
    provides some protection.  saturation protection is provided at the cost 
    of 5-6 processor cycles. 
     
    there is a bug in AlgoSineSatGen.  saturation currently works only in one 
    "direction" - making the output go too negative will cause the same sort  
    of distortion heard in AlgoSineGen. 
 
 
function name: 
 
    BitmaskFX 
 
file name: 
 
    Bitmask.dsp 
 
associated variables and functions: 
 
    a_BitmaskFX/p_BitmaskFX - parameters for bitmask function 
     
parameter definition: 
 
parameter description expected value 
   
BITMASKFX_TYPE bitmask type (and, or, xor) (1) 
BITMASKFX_MASK bitmask value 0x0000-0x7fff 
BITMASKFX_MIX bitmask mixing scalar 0x0000-0x7fff 
 
(1) BITMASK_TYPE should be taken from list of possible bitmask types in GenFX.h. 
    these are BITMASKFX_AND, BITMASKFX_OR, and BITMASKFX_XOR. 
 
initialization example: 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 44 of 101 

 
/* 
 *  init bitmask for an xor with 0x1278, mix value of 0x1000 
 */ 
    SETPTR(a_BitmaskFX); 
    INIT_BITMASKFX(BITMASKFX_XOR, 0x1278, 0x1000); 
 
misc information: 
 
    BitmaskFX applies is an effect function which applies a bitmask to a 
    generator.  it is similar to OscComb, except that it only uses one 
    generator (Osccomb combines two generator outputs together).  the mix 
    function determines the level of processed audio which is passed through 
    the effect and added to the original mix.  for example, if BITMASKFX_MIX 
    is set to 0x4000, 50% of the resulting signal will come from the BitmaskFX 
    function and 50% will come from the input signal. 
     
    #define values are provided for decimation of the input signal.  to decimate 
    the output, feed one of the DECIMATExx values into the 2nd location of 
    a_BitmaskFX and BITMASKFX_AND into the 1st location. 
 
 
function name: 
 
    ClampFX 
 
file name: 
 
    Clamp.dsp 
 
associated variables and functions: 
 
    a_ClampFX/p_ClampFX - parameters for ClampFX function 
     
parameter definition: 
 
parameter description expected value 
   
CLAMPFX_CLAMPMAX max output 0x0000-0x7fff 
 
initialization example: 
 
/* 
 *  init ClampFX for maximum output of +/-0x2000 
 */ 
    SETPTR(a_ClampFX); 
    INIT_CLAMPFX(0x2000); 
 
misc information: 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 45 of 101 

    ClampFX applies a hard maximum output to the input signal.  the clamper 
    works on both positive and negaive inputs.  therefore, if ClampFX is set 
    to 0x2000, the output will be bounded between 0xe000-0x2000 (+/- 1/4 in 
    1.15 fractional notation).  ClampFX is applied before the envelope stage, 
    meaning that the envelope’s scalar further scales the clamped output. 
 
 
function name: 
 
    DelaySynGen 
 
file name: 
 
    DelaySyn.dsp 
 
associated variables and functions: 
 
    a_DelaySynGen/p_DelaySynGen - parameters for killtime function 
    a_DelayBuff0[[LENDSBUFF0] - DelaySynGen buffer 0 
    a_DelayBuff1[[LENDSBUFF1] - DelaySynGen buffer 1 
     
parameter definition: 
 
parameter (1) description expected value 
   
param0 length of delay line            0x0001-LENDSBUFF0/1 
param1 pointer into delay line (2) 
param2 number of filter coeffs (3) 
param3 coefficient 0 0x0000-0xffff 
param4 coefficient 1 0x0000-0xffff 
... ... 0x0000-0xffff 
paramN coefficient (N-3) 0x0000-0xffff 
 
 (1) because DelaySynGen takes a variable number of parameters, #define macros 
    do not exist for its parameters 
(2) this parameter must point to the start of a circular PM buffer. 
(3) initializations of DelaySynGen must take into consideration the #define'd 
    value DELAYSYNTHGEN_VARS.  the number of filter coefficient must never be 
    greater than (DELAYSYNTHGEN_VARS-3). 
     
initialization example: 
 
/* 
 *  init DelaySyn to process a 400 tap delay line (called a_DSBuff1), with 
 *  filter coefficieints 0x4000, 0x2000, 0xb000. 
 */ 
    SETPTR(a_DelaySynGen); 
    DM(I2, M1) = 400; 
    DM(I2, M1) = ^a_DelayBuff1; 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 46 of 101 

    DM(I2, M1) = 3; 
    DM(I2, M1) = 0x4000; 
    DM(I2, M1) = 0x2000; 
    DM(I2, M1) = 0xb000; 
 
retrigger initialization information: 
 
    functions are provided (in InitFunc.dsp) for refilling a_DelayBuff0 and 
    a_DelayBuff1 with noise data.  these functions are: 
     
    /* fill a_DelayBuff0 with noise */ 
    call FillDB0; 
     
    /* fill a_DelayBuff1 with noise */ 
    call FillDB1; 
 
    these functions are normally called in the TrigInit.dsp, one for each 
    DelaySynGen function. 
 
misc information: 
 
    the first noticable difference between DelaySynGen and other gen/fx 
    functions is that it does not have a macro tied to it.  this is because the 
    number of parameters consumed by DelaySyn is configurable.  it is 3 + the 
    number of filter coefficients passed to it.  regardless, the SETPTR macro 
    should be used to set the I2 register to the start of a_DelaySyn such that 
    the proper post processing happens in FillGenFXPtrInits. 
     
    it is also very important to note that the delay lines used by DelaySyn must 
    be placed in PM, not DM.  therefore, it cannot use the same delay lines as 
    the other KS generators (ProbKSGen, etc). 
     
    this function can be hard to configure, as the output of the delay line 
    varies greatly based on the filter coefficients.  however, careful tweaking 
    can lead to very interesting results. 
 
 
function name: 
 
    Exp1Gen 
 
file name: 
 
    Exp1.dsp 
 
associated variables and functions: 
 
    a_Exp1Gen/p_Exp1Gen - parameters for Exp1Gen function 
     
parameter definition: 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 47 of 101 

 
parameter  description expected value 
   
EXP1GEN_RATE update rate 0x0000-0x7fff 
EXP1GEN_CURRCOUNT internal rate count 0x0000-0x7fff 
EXP1GEN_OLDOUT old output 0x0000-0xffff 
EXP1GEN_A “a” parameter 0x0000-0xffff 
EXP1GEN_B “b” parameter 0x0000-0xffff 
EXP1GEN_C “c” parameter  0x0000-0xffff 
EXP1GEN_D “d” parameter 0x0000-0xffff 
 
initialization example: 
 
/* 
 *  init Exp1Gen for an update rate of 20, a=0x1234, b=0xb764, c=0x6687, 
 *  d=0xabe5 
 */ 
    SETPTR(a_Exp1Gen); 
    INIT_EXP1GEN(20, 0x1234, 0xb764, 0x6687, 0xabe5); 
 
retrigger initialization information: 
 
    when retriggering Exp1Gen, it may be desireable to reset the internal state 
    of the function.  the following macro is provided for this purpose: 
     
    /* reset internal count and old output of 3rd call to Exp1Gen */ 
    RESET_EXP1GEN(2); 
 
misc information: 
 
    Exp1Gen implements an "exponential generator", which in this case is the 
    following function: 
     
      newout = (oldout*a^3) - (oldout*b^2) + (oldout*c) - d 
      oldout = newout 
       
    or something like that. 
     
    it's not the most interesting signal generator but it's integrated and it  
    doesn't break SynDevKit and there must be some useful outputs lurking in 
    there. 
 
 
function name: 
 
    ExpDecayEnv 
 
file name: 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 48 of 101 

    ExpDecay.dsp 
 
associated variables and functions: 
 
    a_ExpDecayEnv/p_ExpDecayEnv - parameters for ExpDecayEnv function 
     
parameter definition: 
 
parameter  description expected value 
   
EXPDECAYENV_DECRATE env update rate 0x0000-0x7fff 
EXPDECAYENV_INTCOUNT internal rate counter 0x0000-0x7fff 
EXPDECAYENV_DECCONST decay constant 0x0000-0x7fff 
EXPDECAYENV_INTSCALAR env internal scalar 0x0000-0x7fff 
EXPDECAYENV_SCALAR env scalar 0x0000-0x7fff 
EXPDECAYENV_PAN env pan 0x0000-0x7fff 
 
initialization example: 
 
/* 
 *  init ExpDecayEnv update rate of 10, decay constant 0x7ff0, 0x3000 scalar, 
 *  center pan (0x4000) 
 */ 
    SETPTR(a_ExpDecayEnv); 
    INIT_EXPDECAYENV(10, 0x7ff0, 0x3000, 0x4000); 
 
retrigger initialization information: 
 
    if an ExpDecay envelope is attached to a signal generator via a sequencer 
    (ex: Seq2) then the envelope is re-inited automatically.  if a custom 
    retriggering mechanism is used, the following memory locations must 
    be reset: 
     
    a_ExpDecayEnv + EXPDECAYENV_INTCOUNT 
    a_ExpDecayEnv + EXPDECAYENV_INTSCALAR 
     
misc information: 
 
    ExpDecayEnv applies an exponentially decaying envelope to a generator.  it  
    starts at full-scale (0x7fff), and with each iteration multiplies the scalar 
    by the decay constant.  because we are using 1.15 fractional math, each 
    multiplication causes the scalar to approach 0x0000.  the rate at which 
    the decay constant is applied is determined by the decay update rate.  a  
    rate of 10 means that the decay constant is applied every 10 samples. 
    the scaled sampled is then passed through a general scalar, and is then fed 
    through a pan function and into the left and right channel outputs.  panning 
    in ExpDecayEnv is the same as in ADSRPanEnv - 0x4000 is center pan, 0x0000 
    for full left-pan, and 0x7fff for full right-pan. 
     



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 49 of 101 

 
function name: 
 
    ExpImpulseGen 
 
file name: 
 
    ExpImpulse.dsp 
 
associated variables and functions: 
 
    a_ExpImpulseGen/p_ExpImpulseGen - parameters for ExpImpulseGen function 
     
parameter definition: 
 
parameter  description expected value 
   
EXPIMPULSEGEN_DECRATE decay constant 0x0000-0x7fff 
EXPIMPULSEGEN_VOL internal volume 0x0000-0x7fff 
 
initialization example: 
 
/* 
 *  init ExpImpulseGen for impulse with decay constant of 0x6000 
 */ 
    SETPTR(a_ExpImpulseGen); 
    INIT_EXPDECAYENV(0x6000); 
 
retrigger initialization information: 
 
    when ExpImpulseGen is retriggered, there are multiple macros available for 
    the retriggering operation.  one macro re-initializes EXPIMPULSEGEN_VOL to 
    0x7fff.  an example usage of this macro is given below: 
     
    /* reset the 2nd ExpImpulseGen function */ 
    RESET_EXPIMPULSEGEN_FS(1); 
     
    it is also possible to refill the EXPIMPULSEGEN_VOL with a random number 
    with: 
     
    /* reste 2nd ExpImpulseGen function with random volume */ 
    RESET_EXPIMPULSEGEN_RANDOM(1); 
     
    note that this value is fed into the exponential decay calculation. 
    therefore by changing the value of this parameter, the entire duration of 
    the decay waveform is changed. 
         
misc information: 
 
    ExpImpulseGen generates a single exponetially-decaying waveform.  this 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 50 of 101 

    serves the purpose of being an impulse function with configurable width. 
    to generate a very narrow impulse, set the EXPIMPULSEGEN_DECRATE parameter 
    to a low number.  wider impulses are generated by values that approach 
    0x7fff. 
     
    also note that the exponential decay envelope is the recommended envelope 
    for exponential impulses.  this is due to the fact that this envelope starts 
    at full scale, while an ADSR starts at 0.  the exponential impulse can 
    decay extremely quickly, so it is important that the amplitude of the 
    envelope is as great as possible when the generator is retriggered. 
     
     
function name: 
 
    FM2Op0Gen 
     
file name: 
 
    FM2OpGen.dsp 
     
associated variables and functions: 
 
    a_FM2Op0Gen/p_FM2Op0Gen - parameters for FM2Op2Gen 
    a_MIDIFreq[128] - array of MIDI frequencies 
    a_WTSine[129] - circular buffer of 128pt sine wave 
    a_WTTri[129] - circular buffer of 128pt triangle wave 
    a_WTSaw[129] - circular buffer of 128pt sawtooth wave 
    a_WTSq[129] - circular buffer of 128pt square wave 
    a_RandLUT[511] - circular buffer to array of noise 
 
parameter definition: 
 
parameter  description expected value 
   
FM2OP0_MODFREQ modulating frequency 0x0000-0x7fff 
FM2OP0_MODOLDPH mod internal phase 0x0000-0xffff 
FM2OP0_MODLUT mod wavetable LUT (1) 
FM2OP0_ABSFREQ mod absolute value on output 0x0000-0x0001 
FM2OP0_MODENV_UR mod env update rate 0x0000-0x7fff 
FM2OP0_MODENV_RC mod env internal rate count       0x0000-0x7fff 
FM2OP0_MODENV_INTSCALAR mod env internal scalar 0x0000-0x7fff 
FM2OP0_MODENV_STAGE mod env stage 0x0000-0x0003 
FM2OP0_MODENV_ATTACKRATE mod env attack rate 0x0000-0x7fff 
FM2OP0_MODENV_DECAYRATE mod env decay rate 0x0000-0x7fff 
FM2OP0_MODENV_DECAYMIN mod env decay min 0x0000-0x7fff 
FM2OP0_MODENV_SUSTAINLEN mod env sustain length 0x0000-0x7fff 
FM2OP0_MODENV_SUSTAINCNT mod env sustain count 0x0000-0x7fff 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 51 of 101 

FM2OP0_MODENV_RELRATE mod env release rate 0x0000-0x7fff 
FM2OP0_MODENV_SCALAR mod env scalar 0x0000-0x7fff 
FM2OP0_BASECARR carrier base frequency 0x0000-0x7fff 
FM2OP0_CARROLDPH carrier internal phase 0x0000-0xffff 
FM2OP0_CARRLUT carrier wavetable LUT (2) 
 
(1), (2) parameter should point to a 129 element circular wavetable (aligned on 
         a 256 word boundary).  SynDevKit provides a sine wave (a_WTSine), 
         square wave (a_WTSq), triangle wave (a_WTTri), and sawtooth wave 
         (a_WTSaw).  also note that these parameters can point into the random 
         array a_RandLUT, as it is properly aligned. 
 
initialization example: 
 
/* 
 *  init FM2Op0Gen for sinewave modulator/carrier, 100Hz modulator & 200Hz 
 *  carrier, no abs value on modulator, ADSR with 128 sample update rate, 
 *  0x1000 attack rate, 0x0800 decay rate, 0x1000 sustain height, 50 sustain 
 *  count, 0x0010 decay rate, and maximum scale of 150. 
 */ 
    SETPTR(a_FM2Op0Gen); 
    INIT_FM2OP0GEN(100, ^a_WTSine, 0, 128, 0x1000, 0x0800, 0x1000, 50, 0x0010, 
                   150, 200, ^a_WTSine); 
 
retrigger initialization information: 
 
    when retriggering an FM2Op0Gen generator, use the following macro: 
 
    /* reset the 2nd FM2Op0Gen, ADSR and phase of modulator/carrier */ 
    RESET_FM2OP0GEN(1); 
     
    additional macros are provided for reading control data for both the 
    modulator and carrier frequencies from a_CTRLData, both in absolute 
    frequency and in MIDI notes: 
     
    /* load absolute carrier freq of 1st FM2Op0Gen with data in a_CTRLData+1 */ 
    CTRLDATA_TO_FM2OP0GEN_CARRFREQ(1, 0); 
     
    /* load MIDI carrier freq of 2nd FM2Op0Gen with data in a_CTRLData+5 */ 
    CTRLDATA_TO_FM2OP0GEN_CARRFREQ_MF(5, 1); 
     
    /* load abs modulator freq of 3rd FM2Op0Gen with data in a_CTRLData+2 */ 
    CTRLDATA_TO_FM2OP0GEN_MODFREQ(2, 2); 
     
    /* load MIDI carrier freq of 4th FM2Op0Gen with data in a_CTRLData+6 */ 
    CTRLDATA_TO_FM2OP0GEN_MODFREQ_MF(6, 3); 
     
misc information: 
 
    FM2Op0Gen implements a standard FM synthesizer, where the output of the 
    modulator is fed into the frequency input of the carrier.  both the 
    modulator and carrier are based on general wavetable generators.  therefore, 
    either one can generate sine, triangle, sawtooth, sqaurewaves, or white 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 52 of 101 

    noise, depending on the pointer passed to the appropriate wavetable 
    synthesizer.  the modulator has an ADSR envelope immediately following it, 
    allowing for tight control of the output (and hence the input frequency to 
    the carrier).  the scalar parameter on the ADSR controls the maximum output 
    of the modulating frequency. 
     
    FM2Op0Gen is a computationally expensive signal generator.  it runs 2 
    wavetable generators and a ADSR envelope to generate a single signal.  it is 
    also possible to generate some computationally simpler FM outputs by using 
    memory envelopes and LFOs on the input to a single wavetable generator. 
 
 
function name: 
 
    GenSHFX 
 
file name: 
 
    GenSHFX.dsp 
 
associated variables and functions: 
 
    a_GenSHFX/p_GenSHFX - parameters for GenSHFX function 
     
parameter definition: 
 
parameter  description expected value 
   
GENSHFX_HOLDPER hold period for S/H 0x0000-0x7fff 
GENSHFX_HOLDCNT hold period internal counter 0x0000-0x7fff 
GENSHFX_HOLDVAL clamped output 0x0000-0xffff 
 
initialization example: 
 
/* 
 *  hold audio for 8 samples 
 */ 
    SETPTR(a_GenSHFX); 
    INIT_GENSHFX(8); 
     
misc information: 
 
    GenSHFX is an audio rate sample & hold function.  it outputs the same value 
    every n samples, where n is the parameter fed into the initialization macro. 
    after n samples, it outputs the previously computed value and updates the 
    internal hold variable. 
     
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 53 of 101 

function name: 
 
    HPWTGen2 
 
file name: 
 
    HPWTGen2.dsp 
 
associated variables and functions: 
 
    a_HPWTGen2/p_HPWTGen2 - parameters for high precision wavetable generator  
    a_WTSine[129] - circular buffer of 128pt sine wave 
    a_WTTri[129] - circular buffer of 128pt triangle wave 
    a_WTSaw[129] - circular buffer of 128pt sawtooth wave 
    a_WTSq[129] - circular buffer of 128pt square wave 
    a_RandLUT[511] - circular buffer to array of noise 
 
parameter definition: 
 
parameter  description expected value 
   
HPWTGEN2_FREQMSW oscillator frequency most significant word 0x0000-0x7fff 
HPWTGEN2_FREQLSW oscillator frequency least significant word 0x0000-0xffff 
HPWTGEN2_PHASEMSW accumulated phase most significant word 0x0000-0xffff 
HPWTGEN2_PHASELSW accumulated phase least significant word 0x0000-0xffff 
HPWTGEN2_WTPTR pointer to circular wavetable (1) 
 
(1) parameter should point to a 129 element circular wavetable (aligned on 
      a 256 word boundary).  SynDevKit provides a sine wave (a_WTSine), 
      square wave (a_WTSq), triangle wave (a_WTTri), and sawtooth wave 
      (a_WTSaw).  also note that these parameters can point into the random 
      array a_RandLUT, as it is properly aligned. 
 
initialization example: 
     
    /* init HPWTGen2 to create a 400.25Hz triangle wave */ 
    SETPTR(a_HPWTGen2); 
    INIT_WTGEN2(400, 0x4000, ^a_WTTri); 
     
retrigger initialization information: 
     
    when retriggering HPWTGen2, it may be desirable to reset the phase to zero. 
    if this is not done, an offset impulse at the start of the signal might be 
    heard, depending on the phase and envelope type.  the following macro is 
    provided for this purpose: 
     
    /* init phase of 2nd HPWTGen2 */ 
    RESET_PHASE_HPWTGEN(1); 
         



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 54 of 101 

    additionally, macros are provided for initing the frequency of the wavetable 
    generator from a_CTRLData during retiggering.  one of the macros only 
    initializes the upper 16 bits of the oscillator frequency, while the other 
    one uses two a_CTRLData arrays for initialization; one for the upper 16 bits 
    of the oscillator frequency, and one for the lower 16 bits of the oscillator 
    frequency. 
     
    /* init 1st HPWTGen2 with freq from a_CTRLData+2, upper 16 MSW only */ 
    CTRLDATA_TO_HPWTGEN2_MSWFREQ(2, 0); 
     
    /* init 2nd HPWTGen2 with freq from a_CTRLData+0 and a_CTRLData+3 */ 
    CTRLDATA_TO_HPWTGEN_FREQ(0, 3, 1); 
         
misc information: 
 
    HPWTGen2 is a high-precision wavetable generator, similar in operation to 
    WTGen2.  the big difference between the two generators is that HPWTGen2 uses 
    a 16.16 fractional datatype for the input frequency, while WTGen2 uses a 
    16.0 datatype for the input frequency.  the 16 LSBs are represented by an 
    unsigned 16 bit value.  a simple command-line program is provided to help 
    converting unsigned hex values into decimal values, and vice versa.  the 
    program is called formatconv.exe and is located in the .\tools directory. 
    examples of how to use formatconv are given below: 
     
      c:\>formatconv -f2h 0.1234 
       
      fractional input:  0.123400 
      hex output:        0x1f97 
       
      c:\>formatconv -h2f 0x6521 
       
      hex input:          0x6521 
      fractional output:  0.395041 
       
    this program is useful for generating exact hex values when a specific 
    fractional frequency is desired. 
     
    the reason to use WTGen/WTGen2 over HPWTGen2 is that HPWTGen2 takes more 
    cycles to generate an output (30 (WTGen) & 20 (WTGen2) vs 34 cycles). the 
    ability to specifically tune the output in HPWTGen2 is very useful for 
    generating beat frequencies. 
 
 
function name: 
 
    KillTimeFX 
 
file name: 
 
    KillTime.dsp 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 55 of 101 

associated variables and functions: 
 
    a_KillTimeFX/p_KillTimeFX - parameters for killtime function 
     
parameter definition: 
 
parameter  description expected value 
   
KILLTIMEFX_CYCLES number of cycles to wait in loop 0x0000-0x3fff 
     
initialization example: 
 
/* 
 *  create a wait loop for 100 cycles (technically it is 100 + setup time for 
 *  the loop, which is approximately 5 cycles) 
 */ 
    SETPTR(a_KillTimeFX); 
    INIT_KILLTIMEFX(100); 
     
misc information: 
 
    KillTime is typically used for generating odd effects caused by incomplete 
    filling of the output buffer due to increasing the overall processing time. 
    as this number gets bigger, the output slows down and clipping along with 
    other harsh artifacts are introduced. 
     
    this function is also useful for determining how many free cycles remain for 
    undistorted audio processing. 
     
 
function name: 
 
    KSGen 
     
file name: 
 
    KSGen.dsp 
 
associated variables and functions: 
 
    a_KSGen/p_KSGen - parameters for KSGen 
    a_KSBuff0[LENKSBUFF0] - circular buffer for KS synthesis 
    a_KSBuff1[LENKSBUFF1] - circular buffer for KS synthesis 
    a_KSBuff2[LENKSBUFF2] - circular buffer for KS synthesis 
    a_KSBuff3[LENKSBUFF3] - circular buffer for KS synthesis 
    a_KSBuff4[LENKSBUFF4] - circular buffer for KS synthesis 
    a_KSBuff5[LENKSBUFF5] - circular buffer for KS synthesis 
    a_KSBuff6[LENKSBUFF6] - circular buffer for KS synthesis 
    a_KSBuff7[LENKSBUFF7] - circular buffer for KS synthesis 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 56 of 101 

    a_MIDIFreqKS[128] - translation of MIDI frequencies to KS buffer lengths 
     
    FillKS0Buff - function for re-initing KSBuff0 
    FillKS1Buff - function for re-initing KSBuff1 
    FillKS2Buff - function for re-initing KSBuff2 
    FillKS3Buff - function for re-initing KSBuff3 
    FillKS4Buff - function for re-initing KSBuff4 
    FillKS5Buff - function for re-initing KSBuff5 
    FillKS6Buff - function for re-initing KSBuff6 
    FillKS7Buff - function for re-initing KSBuff7 
 
parameter definition: 
 
parameter  description expected value 
   
KSGEN_ADDSUB subtract or add samples 0x0000-0x0001 
KSGEN_BUFFPTR pointer into KS buffer (1) 
KSGEN_FREQ length of delay line 0x0001-LENKSBUFF0...7 
KSGEN_AVEFACSIGN probabilistic sign of averaging factor 0xc000-0x4000 
KSGEN_AVEFAC averaging factor value 0x0000-0x7fff 
 
(1) KS buffer must be circular.  this parameter should point to the head of this 
    buffer.  SynDevKit provides 8 KS buffers (named KSBuff0-KSBuff7) which are 
    appropriate for KSGen. 
 
initialization example: 
 
    SETPTR(a_KSGen); 
    INIT_KSGEN(1, ^a_KSBuff0, 0x100, 0x4000, 0x4000); 
 
retrigger initialization information: 
 
    when retriggering KSGen, the associated circular buffer of noise is 
    typically refilled.  InitFunc.dsp provides a function call to re-init  
    KSBuff0-KSBuff7 with white noise (called FillKSxBuff, where x is the 
    appropriate KSBuff).  if another buffer is used or if the buffer needs to 
    be filled with something other than white noise, a custom init function 
    must be written. 
 
    macros are provided for loading the KSGEN_FREQ parameter with data from 
    a_CTRLData, interpretting a_CTRLData as a MIDI offset or an absolute 
    length of the delay line: 
 
    /* load 5th KSGen with delay line length from a_CTRLData+2 */  
    CTRLDATA_TO_KSGEN_FREQ(2, 4); 
 
    /* load 2nd KSGen with MIDI offset from a_CTRLData+3 */  
    CTRLDATA_TO_KSGEN_FREQ_MF(3, 1); 
     



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 57 of 101 

misc information: 
 
    the general formula for the output of this function is: 
     
        output = (+/-)(ave factor)*(input(n) +/- input(n-1)) 
 
    the first +/- choice is controlled by a_KSGen[KSGEN_AVEFACSIGN] and is 
    handled in a probabilistic fashion.  0xc000 would force a positive average 
    factor or 0x4000 forces a negative factor.  0x0000 is an equal probability of 
    pos or negative.  values on the extremes sound like plucked strings and 
    values near 0x0000 are good for drum synthesis.  the ave factor is equal to 
    a_KSGen[KSGEN_AVEFAC].  a value of 0x4000 leads to a long tone.  values 
    greater than 0x4000 can lead to saturation.  while this distortion can be 
    annoying for plucked strings, it is useful for drums. 
    a_KSGen[KSGEN_ADDSUB] controls the sign of the  second +/- - the one 
    that is tied to the two inputs.  adding is used for plucked strings and loud 
    noises, subtracting is good for short drum sounds.  adding works as a LPF 
    and subtracting is a HPF.  the buffer that holds the noise to be averaged 
    must be circular.  normally these point into one of the a_KSBuff arrays.  the 
    length of averaging delay line is controlled by KSGen[KSGEN_FREQ].  this 
    value can be anywhere from 1 to the length of the KS buffer.  the larger the 
    value, the lower the frequency.  the frequency is directly related to the buffer 
    length.  for instance, the frequency of a buffer with length 441 is 
    44100/441 = 100Hz. 
     
    when initing a KS generator (usually in the associated TrigInit function), 
    call the FillKSxBuff function, where x is equal to the number of the 
    associated KSBuff (ex: FillKS1Buff is the function for re-initing KSBuff1). 
     
    in general, ProbKSGen is a better choice for a general purpose karplus 
    strong generator.  it has more control parameters and handles saturation 
    properly.  however, there may be instances where saturation is desired, 
    especially when initializing parameters to generate drum sounds.  in this 
    case, try using KSGen rather than ProbKSGen. 
     
 
function name: 
 
    LFO3 
 
file name: 
 
    LFO3.dsp 
 
associated variables and functions: 
 
    a_LFO3/p_LFO3 - parameters for LFO memory modifier 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 58 of 101 

    a_WTSine[129] - circular buffer of 128pt sine wave 
    a_WTTri[129] - circular buffer of 128pt triangle wave 
    a_WTSaw[129] - circular buffer of 128pt sawtooth wave 
    a_WTSq[129] - circular buffer of 128pt square wave 
    a_RandLUT[511] - circular buffer to array of noise 
     
parameter definition: 
 
parameter  description expected value 
   
LFO3_HOLDPER LFO hold period for sample/hold operation 0x0001-0x7fff 
LFO3_CURRPER LFO hold period internal counter 0x0001-0x7fff 
LFO3_FREQ LFO frequency (in 1/128 Hz increments) 0x0000-0x7fff 
LFO3_PHASE LFO internal phase count 0x0000-0x7fff 
LFO3_PTR pointer to base address of LFO wavetable (1) 
LFO3_MOD LFO modulation amount 0x0000-0x7fff 
LFO3_BASE LFO modulation base value 0x0000-0x7fff 
LFO3_ADDR LFO moduation target address (2) 
 
(1) parameter should point to a 129 element circular wavetable (aligned on 
      a 256 word boundary).  SynDevKit provides a sine wave (a_WTSine), 
      square wave (a_WTSq), triangle wave (a_WTTri), and sawtooth wave 
      (a_WTSaw).  also note that these parameters can point into the random 
      array a_RandLUT, as it is properly aligned. 
(2) this can point at any valid address to be modified. 
 
initialization example: 
 
/* 
 *  init LFO3 for 2.5Hz LFO rate (no sample & hold), squarewave LFO, 0x2000 +/- 
 *  0x200, at address v_LFOTarget 
 */ 
    SETPTR(a_LFO3); 
    INIT_LFO3(1, 320, ^a_WTSq, 0x200, 0x2000, ^v_LFOTarget); 
 
/* 
 *  init another LFO3 with the same parameters, but with a sample & hold 
 *  rate of 10 krates, a sine LFO, and target address of v_LFOTarget+1 
 */ 
    INIT_LFO3(10, 320, ^a_WTSine, 0x200, 0x2000, ^v_LFOTarget+1); 
         
retrigger initialization information: 
     
    LFO3 does not need to be re-inited unless: 
     
    * the target base value changes (ex: if the LFO is tied to the frequency 
      of a signal generator, when a new frequency is calculated for this 
      generator the LFO3 base value must be re-initialized) 
    * the phase of the LFO is to be reset to 0.  this is useful for keeping an LFO 
      in better sync with the sequencer (because the LFO frequency may not 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 59 of 101 

      divide evenly into the sequencer rate).  to do this use the following 
      macro: 
       
    /* reset phase of 2nd LFO3 call */ 
    RESET_PHASE_LFO3(1); 
     
misc information: 
 
    LFO3 applies an LFO to the specified memory location.  it will continue 
    to apply this memory modification indefinitely.  to effectively turn off 
    the memory modifier, the LFO3 modification address can be set to ^v_Dummy. 
     
    LFO3 is based off of the WTGen2 signal generator, but it is called at 
    krate (control rate) rather than arate (audio rate).  because the krate 
    is set to 1/128 the audio rate, the frequencies provided in the 
    a_LFO3[LFO_FREQ] parameter are 1/128 times slower than the actual rate. 
    for instance, to create a 1Hz LFO, the frequency parameter should be set  
    to 128.  a 128Hz LFO would have a frequency equal to 128*128, or 16384 
    (assuming the sample/hold parameter is set to 1). 
         
    the proper number of LFO3 calls are automatically placed into the ModFuncs 
    function via the function CalcLFO3Calls, which is called inside GenFXIni. 
    this function inits the v_NumLFO3 variable with the number of LFO3 calls 
    needed.  inside ModFuncs there is a loop for calling LFO3 v_NumLFO3 times. 
    this architecture has the disadvantage that only 1 LFO can be applied to 
    a memory location, but it simplifies maintanence effort as new LFOs are 
    added simply by initing a new instance in GenFXIni.  therefore, making 
    explicit called to LFO3 is not recommended for normal SynDevKit usage. 
     
    LFO3 also has sample & hold (S/H) functionality, which allows the LFO to 
    hold a particular value for a specific number of krates.  to set the LFO for 
    no S/H, set this parameter to 1.  S/H is useful for syncing an LFO with the 
    sequencer or for creating interesting sounds. 
     
 
function name: 
 
    MemEnv1 
    MemEnv2 
    MemEnv3 
 
file name: 
 
    MemEnv.dsp 
 
associated variables and functions: 
 
    a_MemEnv1/p_MemEnv1 - parameters for ADSR memory modifier 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 60 of 101 

    a_MemEnv2/p_MemEnv2 - parameters for exponential decay memory modifier 
    a_MemEnv3/p_MemEnv3 - parameters for AD memory modifier 
     
parameter definition: 
 
MemEnv1 
 
parameter  description expected value 
   
ME1_CURRSCALE internal current envelope value 0x0000-0x7fff 
ME1_STAGE MemEnv1 stage 0x0000-0x0003 
ME1_ATTACKRATE MemEnv1 attack rate 0x0000-0x7fff 
ME1_DECAYRATE MemEnv1 decay rate 0x0000-0x7fff 
ME1_DECAYMIN MemEnv1 decay minimum 0x0000-0x7fff 
ME1_SUSTAINLEN MemEnv1 sustain length 0x0000-0x7fff 
ME1_SUSTAINCNT internal sustain count 0x0000-0x7fff 
ME1_RELRATE MemEnv1 release rate 0x0000-0x7fff 
ME1_SCALAR MemEnv1 scalar 0x0000-0x7fff 
ME1_ADDR MemEnv1 target address (1) 
 
(1) this can point at any valid modifyable address. 
 
MemEnv2 
 
parameter  description expected value 
   
ME2_CURRSCALE internal current scalar value 0x0000-0x7fff 
ME2_ADDR MemEnv2 target address (1) 
ME2_MAXOUT MemEnv2 maximum output  0x0000-x0x7fff 
ME2_MINOUT MemEnv2 minimum output 0x0000-x0x7fff 
ME2_LIMIT0 MemEnv2 min for control range 0 0x0000-x0x7fff 
ME2_LIMIT1 MemEnv2 min for control range 1 0x0000-x0x7fff 
ME2_LIMIT2 MemEnv2 min for control range 2  0x0000-x0x7fff 
ME2_DRATE0 MemEnv2 exponential decay hold time 0 0x0001-0x7fff 
ME2_DRATECNTR0 internal hold time counter 0x0000-0x7fff 
ME2_SCALAR0 MemEnv2 exponential decay constant 0 0x0000-0x7fff 
ME2_DRATE1 MemEnv2 exponential decay hold time 1 0x0001-0x7fff 
ME2_DRATECNTR1 internal hold time counter 0x0000-0x7fff 
ME2_SCALAR1 MemEnv2 exponential decay constant 1 0x0000-0x7fff 
ME2_DRATE2 MemEnv2 exponential decay hold time 2 0x0001-0x7fff 
ME2_DRATECNTR2 internal hold time counter 0x0000-0x7fff 
ME2_SCALAR2 MemEnv2 exponential decay constant 2 0x0000-0x7fff 
ME2_DRATE3 MemEnv2 exponential decay hold time 3 0x0001-0x7fff 
ME2_DRATECNTR3 internal hold time counter 0x0000-0x7fff 
ME2_SCALAR3 MemEnv2 exponential decay constant 3 0x0000-0x7fff 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 61 of 101 

(1) this can point at any valid modifyable address. 
 
MemEnv3 
 
parameter  description expected value 
   
ME3_STAGE internal current envelope value 0x0000-0x7fff 
ME3_ADDR MemEnv3 target address (1) 
ME3_INTCNTR internal MemEnv3 stage 0x0000-0x0001 
ME3_SA MemEnv3 start attack value 0x0000-0x7fff 
ME3_EA MemEnv3 end attack value 0x0000-0x7fff 
ME3_ATIME MemEnv3 krate tics from start to end attack 0x0001-0x7fff 
ME3_ED MemEnv3 end decay value 0x0000-0x7fff 
ME3_DTIME MemEnv3 krate tics from start to end decay 0x0001-0x7fff 
 
(1) this can point at any valid modifyable address. 
     
initialization example: 
 
/* 
 *  init MemEnv1 for 0x100 attack increment, 0x200 decay decrement, 
 *  sustain height of 0x2000, sustain period of 100 samples, release rate of 
 *  0x4 and target address of v_ME1Target 
 */ 
    SETPTR(a_MemEnv1); 
    INIT_MEMENV1(0x0100, 0x0200, 0x2000, 100, 0x0004, ^v_ME1Target); 
 
/* 
 *  init MemEnv2 for output range from 200 to 100, target address ^v_ME2Target  
 *  with the following characteristics in each stage of decay: 
 * 
 *    stage 0:  no decay hold, decay constant 0x7f00, decay range 0x7fff-0x5000 
 *    stage 1:  decay hold 5, decay constant 0x7f40, decay range 0x4fff-0x4000 
 *    stage 2:  decay hold 3, decay constant 0x7c00, decay range 0x3fff-0x1800 
 *    stage 3:  no decay hold, decay constant 0x7f00, decay range 0x17ff-0x0000 
 */ 
    SETPTR(a_MemEnv2); 
    INIT_MEMENV2(^v_ME2Target, 200, 100, 0x5000, 0x4000, 0x1800, 1, 0x7f00, 5, 
0x7f40, 3, 0x7c00, 1, 0x7f00); 
     
/* 
 *  init MemEnv3 for starting attack of 100, end attack of 400, attack time of 
 *  50 krate tics, end decay of 300, decay time of 700 tics and target address 
 *  of v_ME3Target. 
 */ 
    SETPTR(a_MemEnv3); 
    INIT_MEMENV3(^v_ME3Target, 100, 400, 50, 300, 700); 
         
retrigger initialization information: 
     
    to retrigger MemEnv1, the following memory locations must be inited to zero: 
     
    a_MemEnv1 + ME1_CURRSCALE 
    a_MemEnv1 + ME1_STAGE 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 62 of 101 

    a_MemEnv1 + ME1_SUSTAINCNT 
 
    this typically would happen in the appropriate TrigInit function that the 
    MemEnv1 is tied to.  the following macro is provided for this purpose: 
     
    /* reset 1st MemEnv1 */ 
    RESET_MEMENV1(0); 
     
    to retrigger MemEnv2, the following memory locations must be inited to zero: 
 
    a_MemEnv2 + ME2_CURRSCALE 
    a_MemEnv2 + ME2_DRATECNTR0 
    a_MemEnv2 + ME2_DRATECNTR1 
    a_MemEnv2 + ME2_DRATECNTR2 
    a_MemEnv2 + ME2_DRATECNTR3 
 
    this typically would happen in the appropriate TrigInit function that the 
    MemEnv2 is tied to.  the following macro is provided for this purpose: 
 
    /* reset 4th MemEnv2 */ 
    RESET_MEMENV2(3); 
 
    to retrigger MemEnv3, the following memory locations must be inited to zero: 
     
    a_MemEnv3 + ME3_STAGE 
    a_MemEnv3 + ME3_INTCNTR 
     
    this typically would happen in the appropriate TrigInit function that the 
    MemEnv3 is tied to.  the following macro is provided for this purpose: 
     
    /* reset 3rd MemEnv3 */ 
    RESET_MEMENV3(2); 
     
misc information: 
 
    all of the MemEnv functions apply a memory envelope to an arbitrary memory 
    location.  MemEnv1 applies an ADSR in a very similar fashion to ADSRPan, 
    except that the update rate is hard-coded to the krate (because it is called in 
    ModFuncs.dsp).  MemEnv3 applies an AD envelope to a memory location.  the 
    big difference between how MemEnv1 and MemEnv3 work is that MemEnv3 
    allows for directly setting to time period between the start and end attack and 
    the start and end decay.  this makes MemEnv3 easier to use and in general the 
    perferred envelope function for simple memory envelopes.  additionally, 
    MemEnv3 allows for a non-zero starting value, while MemEnv1 always starts 
    at zero. 
 
    MemEnv2 is slightly more complicated than MemEnv1/3.  it consists of four 
    exponentially decaying waveforms, each of which have configurable hold 
    times and decay amounts.  since SynDevKit is based on fractional 1.15 math, 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 63 of 101 

    repeatedly multiplying an input value by itself will cause it to decay to zero 
    over time (because all 1.15 values are <1).  therefore, the decay constant 
    determines how quickly the envelope will decay.  the smaller the scalar 
    value, the faster the output will reach zero.  the DRATE parameter controls 
    how often the next exponential decay value is calculated.  if the exponential 
    decay value is to be calcualated every time MemEnv2 is called, make sure to 
    set this paraeter to one.  setting it to zero will cause improper behaviour. 
    by including 4 independent exponential decay segments in MemEnv2, it is 
    possible to have envelopes which quick change from decaying very quickly 
    to decaying quite slowly.  one classic example of where this is useful is in 
    modifying the frequency of a sinewave in kickdrum generation.  also note 
    that if less than 4 segments of exponential decay are needed, the LIMIT 
    parameters can be set to zero.  this will cause the associated scalar and 
    hold parameters to be never used. 
     
    all MemEnv calls are directly hung into the ModFuncs function via the 
    CalcMemEnvCalls function.  this function calculates the number of MemEnv 
    calls requested and places this value in v_NumMemEnv.  this value is 
    read in ModFuncs and is used to repeatedly call the appropriate MemEnv. 
    direct calls to any of the MemEnv fucntions is not advised. 
     
    MemEnv3 can also be used with the sequencer to allow for memory envelopes 
    independent of a particular signal generator.  to enable this operation, 
    fill the SEQ2_ENVTYPE parameter with ME3ENV.  the memory envelope will 
    reset only if the TrigTrack associated with it causes it to retrigger. 
    the VolTrack associated with that track is not used.  MemEnv1 has not yet  
    been added as a valid sequencer track and must be handled manually. 
 
 
function name: 
 
    MultiGen 
 
file name: 
 
    MultiGen.dsp 
 
associated variables and functions: 
 
    a_MultiGen/p_MultiGen - parameters for MultiGen 
     
parameter definition: 
 
parameter  description expected value 
   
param0 number of generators to pass through envelope 0x0000-(MULTGEN_VARS/2) 
param1 pointer to first generator (1) 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 64 of 101 

param2 first generator scaling amount 0x0000-0x7fff 
param3 pointer to second generator (1) 
param4 second generator scaling amount 0x0000-0x7fff 
etc etc etc 
 
(1) must point to a valid SynDevKit generator 
 
initialization example: 
 
/* 
 *  init MultiGen to pass 2 generators through an envelope (KSGen and WTGen2, 
 *  with scalars of 0x5000 and 0x3000, respectively). 
 */ 
    SETPTR(a_MultiGen); 
    DM(I2, M1) = 2; 
    DM(I2, M1) = ^KSGen; 
    DM(I2, M1) = 0x5000; 
    DM(I2, M1) = ^WTGen2; 
    DM(I2, M1) = 0x3000; 
     
misc information: 
 
    MultiGen isn't a generator or FX function - instead it provides a simple 
    codified method of passing multiple generators through a single envelope. 
    each generator is called and the output is scaled by the value directly 
    following the function pointer.  after all generators are called, the output 
    is placed into the location pointed to by I7 (the normal location where 
    generators place their output). 
     
    multiple MultiGen calls can be used in a single song.  after the last scalar 
    tied to the last function pointer of the previous MultiGen, the next 
    parameter would be the number of generators to call in the next MultiGen 
    function. 
     
    to avoid saturation, the sum of the scalars used with a set of functions 
    passed through a single envelope must be equal to or less than 0x8000. 
     
    because the number of parameters passed to MultiGen is variable (dependent 
    on the number of functions to be passed through a single envelope), an 
    initialization macro for MultiGen does not exist.  the SETPTR macro sets 
    I2 to the start of the passed variable/array.  therefore, I2 should be used 
    in the initalization instructions of this function. 
 
 
function name: 
 
    OscCombGen 
 
file name: 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 65 of 101 

    OscComb.dsp 
 
associated variables and functions: 
 
    a_OscCombGen/p_OscCombGen - parameters for OscCombGen function 
     
parameter definition: 
 
parameter  description expected value 
   
OSCCOMBGEN_COMBTYPE oscillator combination type (1) 
OSCCOMBGEN_GEN0 oscillator 0 (2) 
OSCCOMBGEN_GEN1 oscillator 1 (2) 
 
(1) must be set to one of the OSCCOMBGEN types defined in GenFX.h 
(2) must not be greater than the number of generators in GenFX.dsp 
 
initialization example: 
 
/* 
 *  init OscCombGen for a multiplication oscillator combination of tracks 4 
 *  and 6 
 */ 
    SETPTR(a_OscCombGen); 
    INIT_OSCCOMBGEN(OSCCOMBGEN_MULT, 4, 6); 
 
retrigger initialization information: 
 
    there are no requirements for retriggering the oscillator combining 
    generator. 
     
misc information: 
 
    OscCombGen is a generator that combines the output of two other tracks 
    to create a new track.  it reads its output from a_GenData, which is where 
    the generators write their unscaled inputs into before they are passed 
    through an envelope (ex: ADSRPanEnv).  there are 9 different combinations 
    supported in this version of SynDevKit, listed below: 
     
      OSCCOMBGEN_XOR:  bitwise-xor two generators 
      OSCCOMBGEN_AND:  bitwise-and two generators 
      OSCCOMBGEN_OR:  bitwise-or two generators 
      OSCCOMBGEN_MULT :  multiply two generators, keep upper 16 MSBs 
      OSCCOMBGEN_LOFIMULT:  multiply two generators, keep lower 16 MSBs 
      OSCCOMBGEN_SUB :  subtract two generators 
      OSCCOMBGEN_ABSMULT :  abs value of one generator multiplied by the other 
      OSCCOMBGEN_BIGGER:  pick the larger input of either generator as output 
      OSCCOMBGEN_SMALLER:  pick the smaller input  of either generator as output  
       



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 66 of 101 

    additional OscComb types can be added to OscCombGen, by following the 
    methodology given in the function.  a new entry would be made in the jump 
    table (OscCombJT), and the code used to read two oscillators would be 
    copied, along with whatever additional code is required to perform the 
    custom combination function.  an entry in the #define table of OscCombGen 
    types can also be added to simplify calling this new operator. 
     
    it is important to note that OscCombGen processes generator data that has not 
    been passed through any envelopes or scaling.  generators typically 
    continuously generate data - they are only muted if the associated envelope 
    is set to zero (ie: end of release stage on ADSR) or if the mix scalar are set  
    to zero (a_RMixScalars, a_LMixScalars).  however, neither of these methods 
    affect the inputs passed into OscCombGen.  OscCombGen combines full-scale 
    audio data and the envelope associated with OscCombGen controls the 
    overall volume of the specific generator. 
     
    also remember that, although this function operates on previously generated 
    data, it is a generator and not a FX function.  it must be placed 
    immediately after a modify(I7, M7) function.  also note that FX can be 
    applied to this generator in the same fashion as any other generator. 
 
 
function name: 
 
    PerNoiseGen 
 
file name: 
 
    PerNoise.dsp 
 
associated variables and functions: 
 
    a_PerNoiseGen/p_PerNoiseGen - parameters for periodic noise generator 
    a_PerNoiseGenParam[19] - "interesting" pernoise parameter values (typically 
                             written into a_PerNoise[PERNOISEGEN_LSWA]) 
                           
parameter definition: 
 
parameter  description expected value 
   
PERNOISEGEN_MSWSEED most significant word of seed 0x0000-0xffff 
PERNOISEGEN_LSWSEED least significant word of seed 0x0000-0xffff 
PERNOISEGEN_LSWA "a" parameter of linear congruence function 0x0000-0xffff 
 
initialization example: 
 
/* 
 *  init periodic noise generator 0xc0de=MSW of seed, 0xd00d=LSW of seed, 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 67 of 101 

 *  0x003f=LSW of A 
 */ 
    SETPTR(a_PerNoise); 
    INIT_PERNOISEGEN(0xc0de, 0xd00d, 0x003f); 
         
retrigger initialization information: 
 
    there are no requirements for retriggering the periodic noise generator.     
     
misc information: 
 
    a generalized implementation of the linear congruence method for generating 
    random numbers is used in PerNoiseGen.  the formula for this is: 
     
      x(n+1) = (a*x(n)+c) mod m 
     
    this is the same formula used to generate random numbers which are then 
    fed into a_RandLUT before song execution begins. 
 
    typically, a and c are defined such that a uniformally distributed set of 
    random numbers are outputted from the function.  however, in this case, it  
    is possible to configure the LSW of a and x(n) such that pitched noises 
    are output from the function (essentially the function does not generate 
    a uniformally distributed number but instead is stuck outputting a small  
    loop of numbers). 
     
    as you could probably guess, it is difficult to determine the ouput of the 
    periodic noise generator empirically.  however, there are a few general 
    rules that can be used to help generate "useful" sounds: 
     
      * there appears to be 16 "modes" of operation for PerNoise as controlled 
        by the lower 4 bits a_PerNoiseGen[PERNOISEGEN_LSWSEED].  what 
        this means is that setting a_PerNoiseGen[PERNOISEGEN_LSWSEED] =  
        0x0000 is roughly equivalent to 0x0010, 0x0020, etc. 
      * feeding even numbers into a_PerNoiseGen[PERNOISEGEN_LSWA] leads 
         to no output 
      * feeding odd numbers that are a power of 2 +/- 1 (ex: 31, 33, 63, 65) 
         seem to have the most interesting characteristics 
 
 
function name: 
 
    PrevCurrFiltFX 
 
file name: 
 
    PrevCurrFilt.dsp 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 68 of 101 

associated variables and functions: 
 
    a_PrevCurrFiltFX/p_PrevCurrFiltFX - parameters for PrevCurrFiltFX function 
     
parameter definition: 
 
parameter  description expected value 
   
PREVCURRFILTFX_PCFTYPE filter type (1) 
PREVCURRFILTFX_MAXDIFF max difference 0x0000-0xffff 
PREVCURRFILTFX_PREVSAMP previous input 0x0000-0xffff 
 
(1)  must be one of the PREVCURRFILTFX types defined in GenFX.h 
 
initialization example: 
 
/* 
 *  init PrevCurrFiltFX for filter type 0, and max difference of 0x0800. 
 */ 
    SETPTR(a_PrevCurrFiltFX); 
    INIT_PREVCURRFILTFX(PREVCURRFILTFX_0, 0x0800); 
 
misc information: 
 
    PrevCurrFiltFX performs filtering operations based on the current sample 
    passed to the function and the previous sample passed to the function. 
    the two examples attempt to perform a sort of low-pass filtering by not  
    allowing the maximum difference between two samples to be greater than 
    the max difference parameter.  however, these function seem to have bugs 
    in them which lead to unexpected outputs.  particularly interesting outputs 
    can be coaxed out of PrevCurrFiltFX if the max difference is controlled by 
    an LFO/MemEnv and/or the max difference is made negative.  additional 
    PrevCurrFiltFX filter types can be added to PrevCurrFiltFX by adding entries 
    into the jump table (PCF_JT) and adding #define values in GenFX.h to 
    access these locations in the jump table. 
 
 
function name: 
 
    ProbKSGen 
 
file name: 
 
    ProbKSGen.dsp 
 
associated variables and functions: 
 
    a_ProbKSGen/p_ProbKSGen - parameters for ProbKSGen function 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 69 of 101 

    a_KSBuff0[LENKSBUFF0] - circular buffer for KS synthesis 
    a_KSBuff1[LENKSBUFF1] - circular buffer for KS synthesis 
    a_KSBuff2[LENKSBUFF2] - circular buffer for KS synthesis 
    a_KSBuff3[LENKSBUFF3] - circular buffer for KS synthesis 
    a_KSBuff4[LENKSBUFF4] - circular buffer for KS synthesis 
    a_KSBuff5[LENKSBUFF5] - circular buffer for KS synthesis 
    a_KSBuff6[LENKSBUFF6] - circular buffer for KS synthesis 
    a_KSBuff7[LENKSBUFF7] - circular buffer for KS synthesis 
    a_MIDIFreqKS[128] - translation of MIDI frequencies to KS buffer lengths 
     
    FillKS0Buff - function for re-initing KSBuff0 
    FillKS1Buff - function for re-initing KSBuff1 
    FillKS2Buff - function for re-initing KSBuff2 
    FillKS3Buff - function for re-initing KSBuff3 
    FillKS4Buff - function for re-initing KSBuff4 
    FillKS5Buff - function for re-initing KSBuff5 
    FillKS6Buff - function for re-initing KSBuff6 
    FillKS7Buff - function for re-initing KSBuff7 
     
parameter definition: 
 
parameter  description expected value 
   
PROBKSGEN_FILTPROB filtering probability 0x0000-0x7fff 
PROBKSGEN_ADDSUBPROB1 add/subtrack probability 0x0000-0x7fff 
PROBKSGEN_ADDSUBPROB2 +/- averaging factor probability 0x0000-0x7fff 
PROBKSGEN_AVEFAC averaging factor  0x0000-0x7fff 
PROBKSGEN_FREQ averaging buffer length 0x0001-LENKSBUFF0..7 
PROBKSGEN_BUFFPTR pointer to buffer (1) 
 
(1) KS buffer must be circular.  this parameter should point to the head of this 
    buffer.  SynDevKit provides 8 KS buffers (named KSBuff0-KSBuff7) which are 
    appropriate for ProbKSGen. 
 
initialization example: 
 
/* 
 *  init ProbKSGen 25% filter rate (75% direct read from noise buffer), 100%  
 *  add samples, always positive averaging factor, 0x4000 averaging factor,   
 *  noise buffer length 0x100, noise buffer is a_KSBuff0. 
 */ 
    SETPTR(a_ProbKSGen); 
    INIT_PROBKSGEN(0x2000, 0x7fff, 0x7fff, 0x0100, ^a_KSBuff0); 
 
retrigger initialization information: 
 
    similar to KSGen, the associated circular buffer of noise for ProbKSGen is 
    typically refilled.  InitFunc.dsp provides a function call to re-init  
    KSBuff0-KSBuff7 with white noise (FillKSxBuff, where x is the appropriate 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 70 of 101 

    KSBuff).  if another buffer is used or if the buffer needs to be filled with 
    something other than white noise, a custom function must be written. 
 
    macros are provided for loading the PROBKSGEN_FREQ parameter with 
    data from a_CTRLData, interpretting a_CTRLData as a MIDI offset or an 
    absolute length of the delay line: 
 
    /* load 5th ProbKSGen with delay line length from a_CTRLData+2 */  
    CTRLDATA_TO_PROBKSGEN_FREQ(2, 4); 
 
    /* load 2nd ProbKSGen with MIDI offset from a_CTRLData+3 */  
    CTRLDATA_TO_PROBKSGEN_FREQ_MF(3, 1); 
 
misc information: 
     
    ProbKSGen is a more generalized, optimized, and overflow-protected version 
    of KSGen.  the general formula for the output of this function is: 
     
      output = (+/-)(avefactor)*((input(n) +/- input(n-1)) 
 
    PROBKSGEN_FILTPROB determines if output will come from this 
    equation or directly from delay line.  if taken from delay line it "slows" the 
    output & transition from noise to a pitched signal.  as this parameter  
    increases, the probability that the noise buffer is processed increases. 
    PROBKSGEN_ADDSUBPROB1 determines the sign of operation on two input 
    samples (+=LPF, -=HPF).  as this parameter increases, the probability that the 
    samples are added increases. PROBKSGEN_ADDSUBPROB2 determines the 
    sign of avefactor.  this affects the timbre of the output.  as this parameter 
    increases, the probability the avefactor will be positive increases. 
    PROBKSGEN_AVEFAC is the averaging factor value.  the larger the value, the 
    longer it takes for the noise buffer to dissipate.  a value of 0x4000 is on 
    the cusp of the buffer never disappearing (ie: if avefactor>0x4000 it will 
    always outputs data).  values <0x4000 can lead to the typical plucked string 
    output.  PROBKSGEN_FREQ set the length of delay line in samples.  the 
    longer the delay line, the deeper the pitch.  a MIDI conversion table of delay 
    line lengths to MIDI frequencies is stored in the a_MIDIFreqKS array. 
    PROBKSGEN_BUFFPTR points  into noise buffer.  this buffer must be 
    circular. 
                             
    in general this is a much more powerful and flexible KS generator than 
    KSGen.  however, there are still times when KSGen might be a better choice 
    of signal generators, specifically when generating drum sounds.  along with 
    generating plucked strings, KS algorithms are good for creating snare drums. 
    one feature that makes KSGen good for creating drum sounds is that 
    saturation is not properly handled in that algorithm, leading to stronger 
    transients.  ProbKSGen does not overflow, which is very useful for creating 
    drones where avefactor>0x4000.  on KSGen setting avefactor>0x4000 can lead 
    to a ticking sound due to the large transcients being introduced into the 
    noise buffer (because the noies buffer overflows and a new spike is written 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 71 of 101 

    to the output). 
     
 
function name: 
 
    ProbSynGen 
 
file name: 
 
    ProbSyn.dsp 
 
associated variables and functions: 
 
    a_ProbSynthGen/p_ProbSynthGen - parameters for probabilistic synthesizer 
                           
parameter definition: 
 
parameter  description expected value 
   
PROBSYNTHGEN_RATE bit recalculation rate 0x0001-0x7fff 
PROBSYNTHGEN_INTCOUNT internal counter 0x0001-0x7fff 
PROBSYNTHGEN_VAL current output 0x0000-0xffff 
PROBSYNTHGEN_PROB15 probability bit 15 is set 0-100 
PROBSYNTHGEN_PROB14 probability bit 14 is set  0-100 
PROBSYNTHGEN_PROB13 probability bit 13 is set  0-100 
PROBSYNTHGEN_PROB12 probability bit 12 is set  0-100 
PROBSYNTHGEN_PROB11 probability bit 11 is set  0-100 
PROBSYNTHGEN_PROB10 probability bit 10 is set  0-100 
PROBSYNTHGEN_PROB9 probability bit 9 is set 0-100 
PROBSYNTHGEN_PROB8 probability bit 8 is set 0-100 
         
initialization example: 
 
/* 
 *  every 30 samples update output, 50% prob of bits 15-8 set to 1, 50% set to. 
 *  0.  bits 0-7 are all zero. 
 */ 
    SETPTR(a_ProbSynthGen); 
    INIT_PROBSYNTHGEN(30, 50, 50, 50, 50, 50, 50, 50, 50); 
         
retrigger initialization information: 
 
    there are no requirements for retriggering the periodic noise generator.     
     
misc information: 
 
    the 8 MSBs are set/cleared in a probabilsitic fashion. 
    a_ProbSynthGen[PROBSYNTHGEN_PROB15] determines the probability that bit  



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 72 of 101 

   15 will be a 0 or a 1, a_ProbSynthGen[PROBSYNTHGEN_PROB14] does 
    the same for bit 14 and so on.  the period determines how often the 
    bits are updated.  only 8 MSBs are used in this function - the LSBs are 
    all set to zero.  the range for each of the probabilisticly set parameters is 
    between 0 (always set at 0) and 100 (always set at 1). 
     
    this function is useful for generating pitched noises and squarewave-ish sounds. 
     
 
function name: 
 
    RectifyFX 
 
file name: 
 
    Rectify.dsp 
 
associated variables and functions: 
 
    a_RectifyFX/p_RectifyFX - parameters for Rectify function 
     
parameter definition: 
 
parameter  description expected value 
   
RECTIFYFX_REC positive or negative rectify (1) 
 
(1) must be set to POS_RECTIFY or NEG_RECTIFY 
 
initialization example: 
 
/* 
 *  init Rectify for a negative rectify 
 */ 
    SETPTR(a_RectifyFX); 
    INIT_RECTIFYFX(NEG_RECTIFY); 
 
misc information: 
 
    applies a positive or negative rectification to the input signal.  if a 
    positive rectify is selected, the input signal is forced to always be > 0, 
    and if a negative rectify is selected, the input signal is forced to always 
    be < 0. 
 
 
function name: 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 73 of 101 

    RotSynthGen 
 
file name: 
 
    RotSynth.dsp 
 
associated variables and functions: 
 
    a_RotSynthGen/p_RotSynthGen - parameters for RotSynth 
 
parameter definition: 
 
parameter  description expected value 
   
ROTSYNTHGEN_COUNT samples between data rotates 0x0001-0x7fff 
ROTSYNTHGEN_INTCOUNT internal counter 0x0001-0x7fff 
ROTSYNTHGEN_ROTDIST rotation amount 0x0001-0x000f 
ROTSYNTHGEN_VAL value to rotate 0x0000-0xffff 
 
initialization example: 
 
/* 
 *  init RotSynth for period of 10, rotation distance of 1, 
 *  and 0xdead as rotation seed 
 */ 
    SETPTR(a_RotSynthGen); 
    INIT_ROTSYNTHGEN(10, 1, 0xdead); 
     
retrigger initialization information: 
 
    typically a_RotSynthGen[ROTSYNTHGEN_VAL] is refilled with a new 
    value - either selected from the random number buffer or a value to produce 
    the desired timbre.  the following macro allows for easy re-initing of the 
    RotSynthGen with a new random value: 
     
    /* load 4th RotSynthGen with new random value */ 
    NEW_RANDVAL_ROTSYNTHGEN(3); 
     
misc information: 
 
    in its simplest form (feed 0x0001 into the rot seed, ROTDIST=1), the output 
    is like an exponential ramping up with a big discontinuity when the output 
    is equal to 0x8000 - this is fullscale negative.  the fourier series for 
    this waveform is: 
     
    harm    mag           ang 
    0       0.000045      3.141593 
    1       1.000000      2.501551 
    2       1.520322      -3.033799 
    3       1.746238      -2.426226 
    4       1.851327      -1.892540 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 74 of 101 

    5       1.904798      -1.397241 
    6       1.933131      -0.922600 
    7       1.947196      -0.458903 
    8       1.951471      -0.000001 
     
    thanks to noah for the analysis here. 
     
    as more complex values are fed into the rotation register, the output adds 
    overlayed delayed versions of this waveform.  generally speaking it sounds 
    like a squarewaveish thing, with widely varying timbres when re-inited with 
    different random numbers.  it can also have a fundamental freq which is 
    much higher than the rotation period because it may take fewer than 16 
    rotations to return to the same base value. 
     
    the ROTSYNTHGEN_ROTDIST parameter determines the number of bits the data 
    is rotated.  if the data is rotated by an odd value, it will have the lowest 
    possible pitch but will have a different harmonic series for each option. 
    rotating by an even value leads to higher pitched outputs (because it will 
    not rotate through all 16 values). 
     
 
function name: 
 
    Seq2 
 
file name: 
 
    Seq2.dsp 
 
associated variables and functions: 
 
    a_Seq2/p_Seq2 - parameters for sequencer 
    a_TrigTrack00[128]...a_TrigTrack31[128] - sequencer trigger arrays 
    a_VolTrack00[128]...a_VolTrack31[128] - sequencer volume arrays 
    ap_CTRLTrack00[3]...ap_CTRLTrack31[3] - array of ptrs to control data 
    a_CTRLTrack00_0...a_CTRLTrack31_0 - arrays of control data, parameter 0 
        to... 
    a_CTRLTrack00_7...a_CTRLTrack31_7 - arrays of control data, parameter 7 
    a_CTRLData[8]/p_CTRLData - array of valid control data passed to TrigInit  
 
parameter definition: 
 
parameter  description expected value 
   
a_Seq2[0] number of audio tracks (1) 
1+SEQ2_TRIGCNT internal trigger counter 0x0001-0x7fff 
1+SEQ2_TRIGRATE sequencer trigger rate 0x0001-0x7fff 
1+SEQ2_BASETRIGRATE base trigger rate 0x0001-0x7fff 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 75 of 101 

1+SEQ2_SWINGPER number sequencer steps in swing 0x0001-0x7fff 
1+SEQ2_SWINGCNT internal swing counter 0x0001-0x7fff 
1+SEQ2_SWINGAMOUNT sequencer trigger rate +/- amount  0x0001-0x7fff 
1+SEQ2_SEQLEN sequence length 0x0001-LENTRACK 
1+SEQ2_BASETRIGPTR base of sequencer trigger array (2) 
1+SEQ2_CURRTRIGPTR current pointer in trigger array (2) 
1+SEQ2_VOLPTR pointer into volume array (3) 
1+SEQ2_CTRLTRACKPTR pointer into control track array of pointers (4) 
1+SEQ2_INITFUNC pointer to retriggering function (5) 
1+SEQ2_ENVTYPE envelope type (6) 
1+SEQ2_ENVNUM envelope number (7) 
1+SEQ2_AUXFUNC pointer to auxilliary retrigger function (5) 
 
(1) automatically initialized in GenFXIni.dsp.  range is 1-32. 
(2) must be circular buffer.  a_Seq2 automatically initializes these to 
    ^a_TrigTrack00-^a_TrigTrack31. 
(3) must be circular buffer.  a_Seq2 automatically initializes these to 
    ^a_VolTrack00-^a_VolTrack31. 
(4) automatically initialized to ^ap_CTRLTrack00-^ap_CTRLTrack31 
(5) function normally placed in TrigInit.dsp 
(6) must be one of the envelope types defined in GenFX.h (ex EXPDECAYENV) 
(7) automatically set by GenFXIni.dsp 
 
initialization example: 
 
/* 
 *  init two sequencer tracks with the following characteristics: 
 * 
 *  track0: 
 *    - trigger rate of 200 krates/tics 
 *    - no swing 
 *    - 32 tics in a sequence loop 
 *    - 2 control tracks tied to loop with the following characterics with 
 *      data stored in ap_CTRLTrack00 
 *      - control data held in a_CTRLTrack00_0 and a_CTRLTrack00_1 
 *      - a_CTRLTrack00_0 has length 32, a_CTRLTrack00_1 has length 24 
 *    - TrigInit function called InitBD0 
 *    - ADSR envelope type 
 *    - no auxilliary function call 
 *    - always trigger at step 0 and step 12, volume is 0x2000 and 0x1000 
 * 
 *  track1: 
 *    - base trigger rate of 100 krates/tics 
 *    - swing period of 8 krates, swing of +/- 10 krates 
 *    - 48 tics in a sequence loop 
 *    - no control tracks tied to loop 
 *    - TrigInit function called InitKS0 
 *    - exponential decay envelope type 
 *    - no auxilliary function call 
 *    - 40% trigger at step 4 and step 20, volume is 0x3000 and 0x2000 
 */ 
 
    /* init TrigTrack and VolTrack for each track */ 
    AR = 100;  



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 76 of 101 

    DM(a_TrigTrack00+0) = AR;  
    DM(a_TrigTrack00+12) = AR; 
 
    AR = 0x2000;  
    DM(a_VolTrack00+0) = AR;  
    AR = 0x1000;  
    DM(a_VolTrack00+12) = AR; 
 
    AR = 40;  
    DM(a_TrigTrack01+4) = AR;  
    DM(a_TrigTrack01+20) = AR; 
 
    AR = 0x3000;  
    DM(a_VolTrack01+4) = AR;  
    AR = 0x2000;  
    DM(a_VolTrack01+20) = AR; 
 
    /* init control track */ 
    SETPTR(ap_CTRLTrack00); 
    NUMCTRLTRACKS(2); 
    INIT_AP_CTRLTRACK(LENCTRLTRACK00_0, ^a_CTRLTrack00_0); 
    INIT_AP_CTRLTRACK(LENCTRLTRACK00_1, ^a_CTRLTrack00_1); 
 
    /* init sequencer */ 
    SETPTR(a_Seq2); 
    modify(I2, M1);                         /* do not init # tracks */ 
     
    INIT_SEQ2(200, 0, 0, 32, ^InitBD0, ADSRENV, ^DummyRet); 
    INIT_SEQ2(100, 10, 8, 48, ^InitKS0, EXPDECAYENV, ^DummyRet); 
  
misc information: 
 
    Seq2 behaves like a standard step sequencer, but has a few novel features. 
    one feature is that the decision to retrigger a signal generator is a 
    probabilistic operation, with the probability set between 0-100 in the 
    a_TrigTrack arrays.  for instance, setting a_TrigTrack00[0] to 50 would 
    mean there is a 50% chance that a new hit would be registered and a 50% 
    chance that a new hit will not register for the first ‘tic’ in the sequence. 
     
    a number of automatic initialization happen inside GenFXIni.dsp.  these 
    include: 
     
      * init trigger pointer to point to a_TrigTrack arrays 
      * init volume pointer to point to a_VolTrack arrays 
      * init control track pointer to point to a_CTRLTrack arrays 
      * init ap_CTRLTrack arrays with default data (no control data) 
      * init SEQ2_ENVNUM using SEQ2_ENVTYPE analysis 
      * clear all a_TrigTrack and a_VolTrack arrays 
     
    a_TrigTrack and a_VolTrack must be circular buffers.  keep in mind that one 
    large circular buffer can be cut into a series of smaller circular buffers. 
    for instance, a 128 element circular buffer can also become 2 64 element 
    circular buffers (0-63 and 64-127) or 4 32 element circular buffers (0-31, 
    32-63, 64-95, 96-127), etc etc.  also, a 128 element circular buffer can 
    be made circular for any value between 1 and 128.  therefore, all lengths 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 77 of 101 

    less than the declared length of the buffer are valid. 
     
    a_VolTrack controls the volume of a particular hit.  for instance, 
    a_VolTrack00[0] controls the volume of a_TrigTrack00[0].  the value in 
    a_VolTrack00[0] is automatically loaded into the scalar parameter for the 
    appropriate envelope (as specified by the SEQ2_ENVTYPE parameter).  if a 
    hit does not trigger, the value in a_VolTrack is not loaded into the scalar 
    parameter for the appropriate envelope. 
     
    the control track provides a simple mechanism for providing control data 
    to a particular track.  this can be used for any purpose, such as setting new 
    frequencies on each hit or modifications of LFOs or memory envelopes.  the 
    control track parameter passed into a_Seq2 supports up to 8 pointers and 
    the lengths of these arrays.  typically the length of the control track arrays 
    would be equal to the length of the sequencer track, but it can be made to 
    any length to allow for control parameters that go out of phase with the 
    sequencer hits.  the buffers of control data must be declared circular. 
    the data read from the control tracks is placed into the a_CTRLData buffer 
    and is normally accessed from within the appropriate TrigInit function. 
    for example, if a_CTRLTrack00_0 contains frequency data for a WTGen2 
    generator, the initialization function for that signal generator might look 
    like: 
     
InitWTG0: 
    RESET_PHASE_WTGEN2(0); 
    CTRLDATA_TO_WTGEN2_FREQ(0, 0); 
    rts; 
     
    after Seq2 is initialized, a function called Seq2PostProc must be called. 
    this function performs the following operations: 
     
      a) set the number of tracks parameter to number of macro calls 
      b) set the envelope numbers for each track - typically only needed inside 
         Seq2 
     
    additionally, a_Seq2 is analyzed and envelope functions are automatically 
    written starting at the global label ^Env (inside GenFX).  this is done 
    by analyzing the envelope types in a_Seq2 and writing the appropriate opcode 
    to PM for this function call.  the function which performs this operation is 
    callled InitEnvCalls. 
     
    Seq2 must be called from the ModFuncs function, and is executed at krate. 
    it must be used for sequencing purposes, as some of the the parameters 
    created in a_Seq2 are used in handling system buffers. 
     
    Seq2 can handle up to MAXTRACKS number of tracks.  currently this value is 
    set at 32, though there is no inherent reason why this number cannot be 
    made any arbritrary size.  if this value is increased, additional rts 
    instructions must be put at ^Env to serve as placeholders for InitEnvCalls. 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 78 of 101 

     
    the TrigTrack, VolTrack, and CTRLTrack arrays are automatically written into 
    a_Seq2 in InitFunc. 
     
    the SongCTRL function uses the variable v_TicsPerMeasure to determine the 
    number of tics between measures (which determines how quickly the Measure_JT 
    jump table is traversed).  v_TicsPerMeasure should be set in GenFXIni after 
    the initialization of Seq2 occurs with one of the following macros: 
     
    SEQ2_SET_MEASURE(num); 
      or 
    SET_TICS_PER_MEASURE(num); 
       
    SEQ2_SET_MEASURE(num) sets the length of a measure to the time it takes the 
    sequencer to cycle all the way through one track, where the track selected 
    is based on the 'num' value (with the 1st track being selected with 
    SEQ2_SET_MEASURE(0), etc etc).  SET_TICS_PER_MEASURE(num) sets 
    v_TicsPerMeasure to a specific value, where 'num' is that value. 
 
 
function name: 
 
    SVFFX 
 
file name: 
 
    SVF.dsp 
 
associated variables and functions: 
 
    a_SVFFX/p_SVFFX - parameters for state variable filter 
    a_SVFFiltOut/p_SVFFiltOut - outputs of state variable filter 
 
parameter definition: 
 
parameter  description expected value 
   
SVFFX_K2 filter resonance control 0x0000-0x7fff 
SVFFX_K3 filter cutoff frequency 0x0000-0x7fff 
SVFFX_K4 filter cutoff frequency 0x0000-0x7fff 
SVFFX_TYPE filter type (1) 
 
(1)  must be set to one of 4 filter types (SVFFX_BANDOUT, SVFFX_LOWOUT, 
    SVFFX_HIGHOUT, SVFFX_NOTCHOUT) 
 
initialization example: 
 
/* 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 79 of 101 

 *  init SVF coefficients for a lowpass filter with a cutoff of 0x0400, 
 *  resonance 0x1000. 
 */ 
    SETPTR(a_SVFFX); 
    INIT_SVFFX(0x1000, 0x0400, 0x0400, SVF_LOWOUT); 
             
misc information: 
 
    this is an implementation of a standard 6dB/octave state variable filter. 
    the formula that govern its output are: 
 
    HIGHOUT = input - K2*BANDOUT + LOWOUT; 
    BANDOUT = BANDOUT + K3*HIGHOUT; 
    LOWOUT = LOWOUT - K4*BANDOUT; 
    NOTCHOUT = (HIGHOUT+LOWOUT)/2; 
     
    K2 controls the resonance, or Q, of the filter output.  K3 and K4 set the 
    frequency range which is filtered.  typically K3 and K4 are the same value, 
    though it is possible to modify each of these independently.  resonance is 
    increased as K2 is increased, and the cutoff frequency increases as K3 and 
    K4 increase. 
 
 
function name: 
 
    TunedRotSynthGen 
 
file name: 
 
    TunedRotSynth.dsp 
 
associated variables and functions: 
 
    a_TunedRotSynthGen/p_TunedRotSynthGen - parameters for TunedRotSynth 
    a_MIDIFreq[128] - array of MIDI frequencies 
 
parameter definition: 
 
parameter  description expected value 
   
TUNEDROTSYNTHGEN_COUNT samples between data rotates 0x0001-0x7fff 
TUNEDROTSYNTHGEN_INTCOUNT internal rotation counter 0x0001-0x7fff 
TUNEDROTSYNTHGEN_ROTDIST rotation amount 0x0001-0x000f 
TUNEDROTSYNTHGEN_VAL value to rotate 0x0000-0xffff 
TUNEDROTSYNTHGEN_SAMPS samples left before full rotation 0x0001-0xffff 
TUNEDROTSYNTHGEN_ROTLEFT rotations left before full rotation 0x0001-0x000f 
TUNEDROTSYNTHGEN_FREQ TunedRotSynthGen frequency 0x0001-0x0AC4 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 80 of 101 

initialization example: 
 
    /* set TunedRotSynth rotation distance 1, 0xdead rotation seed, 200Hz */ 
    SETPTR(a_TunedRotSynthGen); 
    INIT_TUNEDROTSYNTHGEN(1, 0xdead, 200); 
     
retrigger initialization information: 
 
    two macros are provided for initialization of TunedRotSynthGen - one for 
    loading a new random value into the rotation seed, and another for setting 
    the frequency of the output signal. 
     
    /* load 4th TunedRotSynthGen with new random value */ 
    NEW_RANDVAL_TUNEDROTSYNTHGEN(3); 
     
    /* set freq of 2nd TunedRotSynthGen from 4th control track */ 
    CTRLDATA_TO_TUNEDROTSYNTHGEN_FREQ(3, 1); 
     
misc information: 
 
    TunedRotSynthGen is similar to RotSynthGen.  both signal generators create 
    an output by rotating a value.  the difference between the two generators is 
    that TunedRotSynthGen takes a frequency value as an input while RotSynthGen 
    takes the period between rotations as an input.  TunedRotSynthGen uses  
    division to calculate the number of samples between rotations.  the 
    algorithm is crude - tuning is far from perfect.  also, frequencies greater 
    than 44100/16 (2756Hz) are not handled properly at all.  this is due to 
    the period-calculation algorithm not taking into consideration the remainder 
    in the divide operation.  TunedRotSynthGen is much more accurate (though 
    still not very) when working with lower frequency values. 
     
    TunedRotSynthGen is also more computationally expensive than RotSynthGen, 
    especially when TunedRotSynthGen must calculate a new period or every time 
    it shifts a value.  however, if the frequency is low, these divisions 
    occur infrequently and the division penalty is averaged out over number of samples. 
     
 
function name: 
 
    WaveShapeFX 
 
file name: 
 
    WaveShape.dsp 
 
associated variables and functions: 
 
    a_WaveShapeFX/p_WaveShapeFX - parameters for waveshaper 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 81 of 101 

parameter definition: 
 
parameter  description expected value 
   
WAVESHAPEFX_CONTINUITY dis/continuous waveshaper curve (1) 
WAVESHAPEFX_CUTOFF cutoff between curve0 and curve1 0x0000-0x7fff 
WAVESHAPEFX_MSWSCALE0 MSW slope (0 to cutoff input) 0x0000-0x7fff 
WAVESHAPEFX_MSWSCALE1 LSW slope (0 to cutoff input) 0x0000-0xffff 
WAVESHAPEFX_LSWSCALE0 MSW slope cutoff input to 0x7fff) 0x0000-0x7fff 
WAVESHAPEFX_LSWSCALE1 LSW slope cutoff input to 0x7fff) 0x0000-0xffff 
 
(1) must be set to WAVESHAPEFX_CONTINUOUS or 
    WAVESHAPEFX_DISCONTINUOUS 
     
initialization example: 
 
/* 
 *  apply continuous waveshaper with slope of 0.5 when input is below 0x5000  
 *  and 1.25 above 0x5000 
 */ 
    SETPTR(a_WaveShapeFX); 
    INIT_WAVESHAPEFX(WAVESHAPEFX_CONTINUOUS, 0x5000, 0x0000, 0x8000, 0x1000, 
                     0x4000); 
             
misc information: 
 
    WaveShapeFX maps input samples to a new output value, based upon the slopes 
    provided by the SCALE1 and SCALE0 parameters.  WaveShapeFX uses a 32-bit  
    scalar value, in 16.16 fractional format.  therefore, the LSW is an unsigned value. 
    this is different from the typical datatype used in SynDevKit, which is 1.15 
    signed fractional format. 
     
    a command-line program is provided to help generate hex values based on 
    fractional inputs and vice versa.  the program is called formatconv.exe and 
    is located in the tools directory.  examples of executing formatconv are 
    given below: 
     
      c:\>formatconv -f2h 0.1234 
       
      fractional input:  0.123400 
      hex output:        0x1f97 
       
      c:\>formatconv -h2f 0x6521 
       
      hex input:          0x6521 
      fractional output:  0.395041 
     
    the first two scalar values in the waveshaper parameter list determine the 
    slope of the output up to the cutoff value.  therefore, if the cutoff is 
    set to 0x4000 and the scalar is set to 1.5, an input value of 0x4000 leads 
    to an output value of 0x6000.  the waveshaper supports saturation; therefore 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 82 of 101 

    if the scalar causes the input to pass beyond full-scale (0x7fff for 
    positive inputs, 0x8000 for negaitve inputs) the output will be clamped 
    at full-scale positive or negative, as appropriate.  the second two scalar 
    values determine the slope of the output beyond the cutoff value up to 
    full-scale. 
     
    the WAVESHAPEFX_CONTINUITY parameter determines if the waveshaper is forced 
    to have a continuous input/output curve.  if WAVESHAPEFX_CONTINUOUS is 
    passed in the waveshaper parameter list, the input/output curve is 
    continuous.  this means that the slope of the second scalar is only applied 
    to the difference between the input value and the cutoff value.  for 
    instance, if the first scalar slope is 1.25, cutoff is 0x4000, second slope 
    is 0.75, and the input sample is 0x7000, the output would be: 
     
      (0x4000*1.25) + ((0x7000-0x4000)*0.75) = 0x5000 + 0x2400 = 0x7400 
     
    if the WAVESHAPEFX_CONTINUITY parameter is set to  
    WAVESHAPEFX_DISCONTINUOUS, the output above the cutoff is not affected 
    by slope of the first scalar.  therefore, the output in this case would be: 
     
      0x7000*0.75 = 0x5400 
     
    the discontinuous mode of WaveShapeFX can lead to a jump between the output 
    just less than the cutoff value and the output just greater than the cutoff 
    value.  for normal compression/expansion functionality, WaveShapeFX should be 
    configured for WAVESHAPEFX_CONTINUOUS operation.   
    WAVESHAPEFX_DISCONTINUOUS is more approrpiate for unconventional 
    distorted outputs. 
 
 
function name: 
 
    WTGen 
    WTGen2 
 
file name: 
 
    WTGen.dsp 
    WTGen2.dsp 
 
associated variables and functions: 
 
    a_WTGen/p_WTGen - parameters for wavetable generator  
    a_WTGen2/p_WTGen2 - parameters for speedy wavetable generator 
    a_WTSine[129] - circular buffer of 128pt sine wave 
    a_WTTri[129] - circular buffer of 128pt triangle wave 
    a_WTSaw[129] - circular buffer of 128pt sawtooth wave 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 83 of 101 

    a_WTSq[129] - circular buffer of 128pt square wave 
    a_RandLUT[511] - circular buffer to array of noise 
    a_MIDIFreq[128] - array of MIDI frequencies 
 
parameter definition: 
 
WTGen 
 
parameter  description expected value 
   
WTGEN_PHASE accumulated phase 0x0000-0xffff 
WTGEN_FREQ frequency 0x0000-0x7fff 
WTGEN_WTPTR pointer to circular wavetable (1) 
 
(1) parameter should point to a 129 element circular wavetable (aligned on 
      a 256 word boundary).  SynDevKit provides a sine wave (a_WTSine), 
      square wave (a_WTSq), triangle wave (a_WTTri), and sawtooth wave 
      (a_WTSaw).  also note that these parameters can point into the random 
      array a_RandLUT, as it is properly aligned. 
 
WTGen2 
 
parameter  description expected value 
   
WTGEN2_FREQ frequency 0x0000-0x7fff 
WTGEN2_PHASE accumulated phase 0x0000-0xffff 
WTGEN2_WTPTR pointer to circular wavetable (1) 
 
(1) parameter should point to a 129 element circular wavetable (aligned on 
      a 256 word boundary).  SynDevKit provides a sine wave (a_WTSine), 
      square wave (a_WTSq), triangle wave (a_WTTri), and sawtooth wave 
      (a_WTSaw).  also note that these parameters can point into the random 
      array a_RandLUT, as it is properly aligned. 
 
initialization example: 
 
    /* init WTGen to create a 100Hz sine wave */ 
    SETPTR(a_WTGen); 
    INIT_WTGEN(100, ^a_WTSine); 
     
    /* init WTGen2 to create a 500Hz triangle wave */ 
    SETPTR(a_WTGen2); 
    INIT_WTGEN2(500, ^a_WTTri); 
     
retrigger initialization information: 
     
    when retriggering either WTGen or WTGen2, it may be desirable to reset the 
    phase (either WTGen[WTGEN_PHASE] or WTGen2[WTGEN2_PHASE]) to 
    zero.  if this is not done, an offset impulse at the start of the signal might be 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 84 of 101 

    heard, depending on the phase and envelope type.  the following macros are 
    provided for this purpose: 
     
    /* init phase of 2nd WTGen */ 
    RESET_PHASE_WTGEN(1); 
     
    /* init phase of 3rd WTGen2 */ 
    RESET_PHASE_WTGEN2(2); 
     
    additionally, macros are provided for initing the frequency of either 
    wavetable generator from a_CTRLData during retiggering.  macros are provided 
    for either an absolute frequency or a MIDI note frequency: 
     
    /* init 1st WTGen with absolute freq from a_CTRLData+2 */ 
    CTRLDATA_TO_WTGEN_FREQ(2, 0); 
     
    /* init 2nd WTGen with MIDI freq from a_CTRLData+0 */ 
    CTRLDATA_TO_WTGEN_FREQ_MF(0, 1); 
     
    /* init 3rd WTGen2 with absolute freq from a_CTRLData+4 */ 
    CTRLDATA_TO_WTGEN2_FREQ(4, 2); 
     
    /* init 4th WTGen with MIDI freq from a_CTRLData+1 */ 
    CTRLDATA_TO_WTGEN2_FREQ_MF(1, 3); 
     
misc information: 
 
    WTGen and WTGen2 are essentially the same algorithm, except that WTGen2 is 
    33% more efficient, but doesn't handle negative frequencies in the same 
    way.  WTGen wraps samples back around within the wavetable while WTGen2 
    reads outside the wavetable. 
     
    WTGen2 does not require its buffers to be circular, but it must take into 
    consideration the case where the last element of the wavetable is read and 
    make WT[128]=WT[0].  this is handled in the DSP initialization functions. 
     
    both functions require that their wavetable buffer be circular on a 256-pt boundary. 
     
    both WTGen and WTGen2 use linear interpolation to dynamically create an 
    output based on an input frequency and current state. 
     
    it is possible to create custom wavetable buffers for these generators. 
    one use for this would be to add PWM to the square wave without corrupting 
    a_WTSq for use by other generators or LFOs. 
         
 
function name: 
 
    WTGenSyncFX 
 
file name: 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 85 of 101 

 
    WTGenSync.dsp 
 
associated variables and functions: 
 
    a_WTGenSyncFX/p_WTGenSyncFX - parameters for WTGenSyncFX function 
     
parameter definition: 
 
parameter  description expected value 
   
WTGENSYNCFX_WTADDR wavetable generator parameter pointer (1) 
WTGENSYNCFX_OSCNUM0 number of generator whose phase is reset  (2) 
WTGENSYNCFX_OSCNUM1 number of generator who sets reset rate (2) 
WTGENSYNCFX_OSCPHASE internal phase state 0x0000-0xffff 
 
(1) must be equal to ^a_WTGen or a_WTGen2 
(2) must be between 0 and the number of wavetable generators used in song 
 
initialization example: 
 
/* 
 *  init WTGenSyncFX to sync 3rd WTGen2 oscillator to the 5th WTGen oscillator 
 */ 
    SETPTR(a_WTGenSyncFX); 
    INIT_WTGENSYNCFX(^a_WTGen2, 2, 4); 
 
misc information: 
 
    a_WTGenSyncFX syncs two oscillators by resetting the phase of one oscillator 
    once the other one has passed through an entire cycle.  the first oscillator  
    specified in the parameter list is the one whose phase is continually reset, 
    while the second oscillator specified determines when the 1st oscillator's 
    phase is reset.  the two oscillators must be of the same type (WTGen or 
    WTGen2).  no other oscillator synchronization is provided by this function. 
    the two oscillators can be at any frequency (typically oscillator 1 is at 
    a lower frequency than oscillator 2, but interesting effects are possible if 
    the opposite is true).  the call to WTGenSyncFX can be placed anywhere in 
    GenFX.dsp - it does not need to immediately follow either wavetable 
    generator call. 
 
 
function name: 
 
    ZeroSampsFX 
 
file name: 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 86 of 101 

    ZeroSamps.dsp 
 
associated variables and functions: 
 
    a_ZeroSampsFX/p_ZeroSampsFX - parameters for ZeroSamps function 
     
parameter definition: 
 
parameter  description expected value 
   
ZEROSAMPSFX_PROB zeroing probability factor 0x0000-0x7fff 
 
initialization example: 
 
/* 
 *  init ZeroSamps for a zeroing probability of 0x1000 (12.5%) 
 */ 
    SETPTR(a_ZeroSampsFX); 
    INIT_ZEROSAMPSFX(0x1000); 
 
misc information: 
 
    ZeroSampsFX selectively zeroes out its input, based on the probability 
    factor.  a probability factor of 0x0000 will never zero the output, while 
    a probability factor of 0x7fff will always zero the output.  setting this 
    factory between these two values will change the probability that the 
    output will be zeroed out.  for example, setting the probability factor to 
    0x4000 leads to a 50% chance that the output will be zero, and 50% chance 
    that the output will be unaffected. 
 
 
 

SynDevKit Mixers 
 
    SynDevKit provides basic mixing functionality for adding all audio tracks 
    and writing the output to the output buffers.  however, SyDevKit was 
    written to support custom mixing functions.  for instance, it may be desireable 
    to feed the output of one of the signal generators into the input of another 
    generator.  another possibility would be to do submixes on sets of tracks, 
    such that FX could then be applied to specific portions of the output. 
 
    the basic mixer used in SynDevKit is explained below. 
 
function name: 
 
    LBasicMix 
    RBasicMix 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 87 of 101 

file name: 
 
    Mixer.dsp 
 
associated variables and functions: 
 
    none 
     
parameter definition: 
 
    none 
 
initialization example: 
 
    not applicable 
 
misc information: 
 
    LBasicMix and RBasicMix are two functions provided to perform the simplest 
    mixing operation on the output from all audio tracks.  each function sums 
    the data in the a_LSampOut/a_RSampOut arrays, multiplying each value by the 
    appropriate a_LMixScalars/a_RMixScalars amount.  the call to these functions 
    is made in GenFX.dsp, as shown in the template project.  the output of these 
    functions is written t o v_LChanOut and v_RChanOut, and I7 is made to point 
    to this memory location.  if a custom mixing function is written, it should 
    also write the output to these memory locations and have I7 point to them, 
    to allow for global track processing and to properly handle the final write 
    of the accumulated track data to the output buffers. 
     
    other possibilities for mixing functions include custom submixes along with 
    application of FX on these groupings of channels, or analysis/feedback of 
    track output into audio generation parameters. 
 
     
 

Miscellaneous SynDevKit Macros 
 
    along with the macros listed above which are used for initialization of 
    generators, fx, and envelopes, additional macros are provided for general 
    SynDevKit control.  keep in mind that macros trash register values.  in 
    general it is a good idea to not assume any register state after using a macro. 
    however, if state must be assumed, it is possible to read the code inserted by 
    the macro to determine if it uses registers which were assumed to hold a 
    specific value. 
 
macro name: 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 88 of 101 

    MUTETRACK(n) 
     
macro purpose: 
 
    mute track 'n', with the first track being track 0. 
 
    please note that there is currently a bug in MUTETRACK, where consecutive uses 
    of MUTETRACK to the same track with an UNMUTETRACK leads to MUTETRACK 
    being stuck at no output indefinitely.  until this bug is fixed, be sure to make 
    use of MUTETRACK only once before using UNMUTETRACK. 
     
example: 
 
    /* mute 4th audio track */ 
    MUTETRACK(3); 
 
 
macro name: 
 
    UNMUTETRACK(n) 
     
macro purpose: 
 
    unmute track 'n', with the first track being track 0.  volume is restored 
    to the value it was previously set at when MUTETRACK was executed. 
     
example: 
 
    /* unmute 4th audio track */ 
    UNMUTETRACK(3); 
 
 
macro name: 
 
    SETTRACKVOL_L(n, vol) 
    SETTRACKVOL_R(n, vol) 
    SETTRACKVOL_LR(n, vol) 
     
macro purpose: 
 
    set the volume of either the left channel, right channel, or both channels 
    of track 'n'. 
     
example: 
 
    /* set left channel volume of the 3rd track to 0x1000 */ 
    SETTRACKVOL_L(2, 0x1000); 
     
    /* set right channel volume of the 2nd track to 0x2000 */ 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 89 of 101 

    SETTRACKVOL_L(1, 0x2000); 
     
    /* set left and right channel volume of the 1st track to 0x4000 */ 
    SETTRACKVOL_LR(0, 0x4000); 
 
 
macro name: 
 
    BASEPLUSRAND_AR(base, rand) 
     
macro purpose: 
 
    calculate a random value and place the output in AR.  BASEPLUSRAND_AR sets 
    the minimum value at 'base' and adds a value between (0-rand). 
     
example: 
 
    /* load AR with a value between 0-100 */ 
    BASEPLUSRAND_AR(0, 100); 
     
    /* load AR with a value between 20-100 */ 
    BASEPLUSRAND_AR(20, 80); 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 90 of 101 

  

SynDevKit PC Software 
 
SynDevKit includes custom software for downloading DSP code from the 
command line, along with additional programs for aiding in the composition of 
songs on SynDevKit.  all of these programs are stored in the .\tools directory. 
 
trackparse1.pl 
 
trackparse1.pl requires a perl intepretter.  the most popular perl interpretter  
for Windows PCs is available for free from ActiveState (www.activestate.com). 
please note that installing ActivePerl changes the path on your PC and may 
cause problems when using gmake in the SynDevKit build process.  if a build 
error occurs, try moving the include path for ActivePerl to the end of the 
SET PATH command in autoexec.bat.  this will cause DOS to use the ActiveState 
path last, and only the appropriate files will be accessed from this directory. 
it appears that this problem only happens on older Windows OSes (95, 98, ME). 
 
trackparse1.pl is a preprocessing function which allows for entering TrigTrack 
and VolTrack information in a more symbolic manner.  normally TrigTrack and 
VolTrack data is entered through DSP assembly code which writes specific 
values to locations in memory (ex: DM(a_VolTrack00+4) = AR;).  the trackparse1 
perl script takes a symbolic "drawing" of a sequencer and translates this into 
initializations of the TrigTrack and VolTrack arrays.  an example of how 
trackparse1 is used is given below: 
 
/* SETTRACK(CLEAR,    0, 0, a--- --b- a--- --a- --a- ---- b--- c---, 
            NOCLEAR, 16, 1, c--- b--- a--- b---, 
            a, 100, 0x3000, 
            b, 100, 0x2800, 
            c, 50, 0x2000, 
            END); */ 
 
first of all note that this preprocessed function is surrounded by comments. 
this is because the 2181 assembler preprocessor should not handle this code. 
the trackparse1 script requires the comments to be placed on the same line 
as the SETTRACK proprocessor identifier and on the last line of the code 
(immediately following the 'END);').  the perl script is easily fooled - 
therefore this exact syntax is strongly suggested. 
 
the first parameter on the first two lines determine if the TrigTrack and 
VolTrack arrays are first cleared before the initialization data is written to 
them.  this allows for incremental changes to a track, along with complete 
resetting and initializing of a track.  in this case, the first track is 
completely cleared (as indicated by 'CLEAR'), while the second track is not 
(as indicated by 'NOTCLEAR').  the second parameter determines the offset 
into the TrigTrack and VolTrack arrays (0 and 16).  this is useful if the song 
uses different segments of the TrigTrack/VolTrack arrays for sequencer data. 
typically this will be set to zero.  the third parameter determines which 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 91 of 101 

TrigTrack/VolTrack will actually receive the initializing data.  in this case, 
tracks 00 and 01 are initialized.  note that is not necessary to initialize 
tracks in any particular sequence, or to initialized all tracks used in a song. 
lastly, the combination of letters and dashes indicates where initialized 
values are written into the TrigTrack and VolTrack arrays.  the dash (' -') is 
indicates where an initialization will not occur, while the various letters 
indicate where initializations will occur.  spaces may be placed between the 
letters and dashes in any order and amount that is desired to improve 
legibility.  also note that this preprocessing operation supports 
initializations of varying lengths for each track and as many tracks can be 
initialized at this point as are required by the song. 
 
immediately following the lines which initialize specific sequencer tracks are 
lines which define the actual TrigTrack and VolTrack values for each symbol 
used in the sequencer initialization.  the first parameter sets the symbol 
that the next two values will correspond two.  the second value is for the 
TrigTrack values and the third value is for the VolTrack value.  all TrigTrack 
and VolTrack initializations are placed on sequential lines. 
 
the last line must contain only an END statement along with the closing 
parenthesis, semi-colon and the end comments.  the end comments must be placed 
on this line - they will not be properly handled by trackparse1 if they are 
placed on a different line. 
 
when this SETTRACK macro is processed by trackparse1.pl, the following code 
is added to the .dsp file: 
 
/* 
 *  autogenerated code for SETTRACK macro 
 */ 
 
    I2 = ^a_TrigTrack00; 
    I3 = ^a_VolTrack00; 
    CNTR = 128; 
    do CL00124 until CE; 
        DM(I2, M1) = 0; 
CL00124:   DM(I3, M1) = 0; 
 
/*  SETTRACK(CLEAR,    0, 0, a--- --b- a--- --a- --a- ---- b--- c---, 
             NOCLEAR, 16, 1, c--- b--- a--- b---, 
 
    /* inits for a */ 
    AX0 = 100; 
    AX1 = 0x3000; 
    DM(a_TrigTrack00+0+0) = AX0; 
    DM(a_VolTrack00+0+0) = AX1; 
    DM(a_TrigTrack00+0+8) = AX0; 
    DM(a_VolTrack00+0+8) = AX1; 
    DM(a_TrigTrack01+16+8) = AX0; 
    DM(a_VolTrack01+16+8) = AX1; 
    DM(a_TrigTrack00+0+14) = AX0; 
    DM(a_VolTrack00+0+14) = AX1; 
    DM(a_TrigTrack00+0+18) = AX0; 
    DM(a_VolTrack00+0+18) = AX1; 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 92 of 101 

     
    /* inits for b */ 
    AX0 = 100; 
    AX1 = 0x2800; 
    DM(a_TrigTrack01+16+4) = AX0; 
    DM(a_VolTrack01+16+4) = AX1; 
    DM(a_TrigTrack00+0+6) = AX0; 
    DM(a_VolTrack00+0+6) = AX1; 
    DM(a_TrigTrack01+16+12) = AX0; 
    DM(a_VolTrack01+16+12) = AX1; 
    DM(a_TrigTrack00+0+28) = AX0; 
    DM(a_VolTrack00+0+28) = AX1; 
     
    /* inits for c */ 
    AX0 = 50; 
    AX1 = 0x2000; 
    DM(a_TrigTrack01+16+0) = AX0; 
    DM(a_VolTrack01+16+0) = AX1; 
    DM(a_TrigTrack00+0+28) = AX0; 
    DM(a_VolTrack00+0+28) = AX1; 
    
once the SETTRACK function is finished, it is automatically processed in the 
build procedure.  before the makefile is invoked and the ADSP-2181 assembler is  
executed, trackparse1.pl is executed on all of the tracks in the specified 
project directory (for example if 'fb_dl_ez81 bleepproj' is entered on the 
command line, trackparse1.pl is run on all .dsp files in the .\bleepproj 
directory).  each .dsp file in the project directory is analyzed and checked for 
the SETTRACK preprocessor indicator.  if it is not found the input file is not 
changed.  if it is found, a new file is created with the SETTRACK macro expanded 
into the appropriate DSP code.  this new file has the same filename as the 
original file, except that it has a parsed_ prepended to the name.  for example, 
if an initialzation was found in SongCTRL_00.dsp, a new file called 
parsed_SongCTRL_00.dsp is created that has the SETTRACK macro fully expanded. 
therefore, if a file has a SETTRACK macro within it, the .mak file contained 
in the project directory must be updated such that it tells the makefile to 
process the 'parsed_' version of the file rather t han the original unprocessed 
file.  also note that the first step of the build procedure is to delete all 
files which start with 'parsed_' in the project directory to avoid processing 
already preprocessed files (ie. ending up with parsed_parsed_SongCTRL_00.dsp, 
and so on). 
 
also note that multiple SETTRACK macros can be placed in the same file.  a 
common usage of SETTRACK is to place multiple initializations in SongCTRL to 
modify sequencer parameters over time.  all labels include a line number with 
them so that multiple initializations of TrigTrack/Vol Track values is 
possible. 
 
cloneproj.pl 
 
similar to trackparse1.pl, cloneproj.pl is a Perl script which requires a Perl 
interpretter.  however, while trackparse1.pl is called during the SynDevKit 
build process, cloneproj.pl is provided as a command line tool for creating 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 93 of 101 

a copy of a pre-existing project.  cloneproj.pl is executed via cloneproj.bat 
in the root directory.  an example of executing this script is given below: 
 
    cloneproj template newsong 
 
running the batch file will create a new song project called ‘newsong’ based 
upon the ‘template’ project.  cloneproj provides some basic error checking 
to ensure that, if a new project is attempted to be created over an existing 
project, an error will be returned.  this is done by searching for the 
SongPtrs.dsp file in the new project directory.  if it is not found, cloneproj  
executes normally.  cloneproj also performs checking to ensure that the 
input project also exists before creating a new project. 
 
this scr ipt has been tested and proven to work on all of the demo projects 
which are a part of SynDevKit.  however, because everyone codes differently, 
it is impossible to guarantee that cloneproj will work for every input project. 
it is highly recommended that, after making a new copy of a project, ‘fc’ (or 
an equivalent file comparison tool) is run on the DSP executables created 
from the old project and the new one.  if any discrepecies exist, email me at 
syndevkit@dspmusic.org. 
 
formatconv.exe 
 
formatconv is used to convert 0.16 hex values into fractional values and vice 
versa.  type .\tools\formatconv on the command line to get help. 
 
an example of using formatconv is given below: 
 
    formatconv -f2h 0.1234 
 
    fractional input:  0.123400 
    hex output:        0x1f97 
 
timeconv.exe 
 
timeconv is used to convert between BPM <-> sequencer tics, and to calculate 
LFO frequencies for a particular krate value.  type .\tools\timeconv on the 
command line to get help.  an example of using timeconv is given below: 
 
    timeconv -calcKRATE 110 
 
    BPM:   110 
    tics:  187 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 94 of 101 

Adding New Signal Generators, FX, Envelopes to SynDevKit 
 
before attempting to write any new generators, effects, or envelopes for 
SynDevKit, be sure to understand and follow the DSP register state 
and processing mode requirements covered in SynDevKit Register/Mode 
Requirements . 
 
all added processing functions should be written to support multiple instances. 
this is handled through using an array of multiple sets of parameters and 
passing a pointer to the start of the parameter data.  at the end of the 
function, the pointer variable is updated such that it points to the location 
of the next set of parameters.  then, at the end of processing a single audio 
sample, the pointer register is set back to the head of the parameter array. 
 
for example, look at WTGen.dsp.  the first instruction of this function reads 
DM(p_WTGen) and places the result into I2.  I2 holds the pointer to the a_WTGen 
array.  WTGen then reads data from a_WTGen, and generates a new sample of 
data.  at the end of this function DM(p_WTGen) is updated with the value in 
I2, which points to the start of the next block of parameters for WTGen. 
 
new functions must be registers in the initialization functions of SynDevKit. 
this involves adding an entry to SetPtrOpcodes inside of InitFunc.dsp.  the 
function FillGenFXPtrInits (called in GenFXIni.dsp) analyzes the code inside 
GenFXIni.dsp, looking for SETPTR() macros, where the pointer inside the macro 
is a generator, FX, or envelope.  if it finds a matching opcode, it then 
registers the addresses of array and pointer associated with the function 
into the a_GenFXPtrInits array.  this array is processed at the beginning 
of each pass through the sample-generation loop in GFPInit.dsp. 
 
again for an example, loop at how WTGen is handled.  one instruction in the 
SetPtrOpcode PM table is the SETPTR macro, which is used in the instruction- 
matching function.  if SETPTR(a_WTGen) is found inside GenFXIni, WTGenPtrInit 
is called.  this writes a_WTGen and p_WTGen into the a_GenFXPtrInits array. 
this array is read in GFPInit.dsp.  in this function, ^a_WTGen is written into 
p_WTGen.  this ensures that the first elements are read out of the a_WTGen 
array on the first call of WTGen. 
 
all generators, fx and generator envelopes are handled in the same fashion and 
must be registered into the a_GenFXPtrInits array.  the only function types 
which are not handled in the same fashion are the memory envelopes (MemEnv1, 
MemEnv3, and LFO3).  these functions are always registered into the 
a_GenFXPtrInits array (because they are always called at least once inside of 
ModFuncs.dsp).  the memory envelopes are registered into a_GenFXPtrInits at the 
start of FillGenFXPtrInits.  if a SETPTR() macro is found for a memory envelope, a 
function is executed which determines the number of INIT_xxx macros are placed 
after it for that particular mem envelope.  this value is then fed into the 
appropriate counter register in ModFuncs.dsp.  this means that, once a memory 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 95 of 101 

envelope is properly initialized into SynDevKit, it is not necessary to make 
distinct calls to use it.  for instance, initializing 6 LFO3 calls in GenFXIni 
will set DM(v_NumLFO3) to 6 and LFO3 will then be called 6 times. 
 
also note that the #define’d value ALLGENFX must be incremented as  
additional functions are added to SynDevKit.  this value should be equal to 
the number of entries into the SetPtrOpcodes jumptable in InitFunc.dsp. 
 
there are four basic types of processing algorithms in SynDevKit.  each basic 
type is explained below, along with information on how to write your own 
algorithms which will work seamlessly within this framework. 
 
SynDevKit Generators: 
         
generators are called immediately after a modify instruction in GenFX.dsp. 
these functions create an audio output which can then be fed through FX and 
envelopes.  all generators write their output into the memory location pointed  
to by I7, but do not increment this pointer (ie use M6 not M7 in the memory 
write instruction). 
 
SynDevKit FX: 
 
FX functions are called after a generator, and they process the output of the 
generator just called.  therefore, they read their input from DM(I7, M6), and 
write their output to DM(I7, M6).  this allows multiple FX functions to be 
placed in series. 
 
SynDevKit Envelopes: 
 
envleopes set the amplitude and panning of a generator (along with whatever fx 
were applied).  they read the audio sample from the address pointed to by 
DM(p_GenData).  this pointer must be updated after reading a value pointed to by 
it.  the left channel output is pointed to by I4, and the right channel output 
is pointed to by I7.  these pointers must be incremented by 1 after writing the 
audio output into them. 
 
calls to envelopes are placed automatically in GenFX, starting at the Env 
label.  a function inside InitFunc analyzes the initialized parameters in 
a_Seq2, and determines the appropriate call to write into PM.  for instance, 
if ADSRENV is written into the SEQ2_ENVTYPE location of a_Seq2, a call to 
ADSRPanEnv will be placed in the Env table.  also note that the #define list 
after the definition of NUMENVTYPES must be updated if a new envelop is created, 
and Seq2.dsp must also be updated.  for instance, if the last envelope number 
is 3 (as is it for ME3ENV), if a new envelope type is added it must be equal 
to 4.  the SEQ2_ENVTYPE parameter is fed into a jumptable inside Seq2, which 
causes the execution of the envelope-specific code for that track.  for 
instance, the ADSRENV entry in the jump table initializes state inside 
a_ADSRPanEnv such that the envelope will start back at the attack stage.  this 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 96 of 101 

code is only executed if the sequencer calls for a new "hit" within a track. 
therefore, the ADSR envelop is automatically initialized every time it needs 
to start over again. 
 
SynDevKit Control-Rate Processes: 
 
  - control-rate processes 
    - memenv, LFO, seq - all called automatically at control rate 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 97 of 101 

FAQs 
 
calling this section frequently asked questions is a bit of a misnomer.  at some 
point there will be real questions to go here.  for the moment, this section 
covers some of the functionality and quirks of SynDevKit that are not easily  
placed in other parts of this document. 
 
q:  can you explain why variables start with either an ‘a_’, ‘p_’, ‘ap_’, ‘v_’, or 
     ‘b_’? 
 
a:  since the ADSP-218x assembler doesn’t use variable types (basically, 
     everything is a 16-bit memory location), variables in SynDevKit have 
     a qualifier prepended to them to make coding a bit easier: 
 
qualifier meaning 
  
a_ array 
p_ pointer 
ap_ array of pointers 
v_ single variable 
b_ boolean/binary value 
 
     therefore, a_WTGen is an array used with WTGen, p_WTGen is a pointer 
     into the a_WTGen array, ap_CTRLTrack00 is an array of CTRLTrack 
     pointers , v_NumMemEnv1 is a variable which holds the number of MemEnv1 
     calls, and b_EndSong is a boolean value which determines if it is time to 
     end the current song. 
 
     also note that the varaible declarations for generators, FX and envelopes 
     follow a specific pattern.  the array and pointer variable declarations for 
     a particular SynDevKit function are the same name as the function, just 
     with a ‘a_’ or ‘p_’ prepended to them.  for example, the parameter array 
     and pointer associated with RotSynthGen are a_RotSynthGen and 
     p_RotSynthGen. 
 
q:  when i try and link my project into SynDevKit, i get errors saying that it cannot 
     find enough memory of the proper type.  what does this mean? 
 
     this most likely means one of two things: 
 
     1.  you’ve declared a PM module or PM/DM data such that it should reside in 
          a specif ic segment, and that segment does not exist in the .ach file.  if 
          this is true, change the segment name to match the architecture file, or 
          (even easier) don’t declare a segment name at all.  it should not be necessary 
          to declare explicit segment names for any part of SynDevKit. 
     2.  you’ve run out of memory.  the default build of SynDevKit does use a lot  
          of DM.  to reduce this amount, try making the #define values in the 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 98 of 101 

          xxxdefs.h file (where xxx is the project name) smaller for resources that you 
          don’t use (ie the LENTRACKs for tracks that are not used, or LENKSBUFF 
          or LENDSBUFF for Karplus Strong generators and DelaySynGen 
          generators that are not used). 
 
q:  i added a new track to my song and now i don’t hear anything/the output 
     is really distorted.  any ideas why? 
 
     in many ways SynDevKit is quite robust and capable of processing data in 
     other musical development environments wouldn’t dream of doing.  however, 
     in other ways SynDevKit is quite delicate and small errors can cause big 
     problems.  if you make a change to the code and you can’t hear any output, 
     a few suggestions on things to check are given below: 
 
    * if another track was added, make sure that the number of initializations is 
      not greater than the maximum number declared in GenFX.h.  for instance, 
      in the default build of SynDevKit, the maximum number of ProbSynthGen 
      calls is 5 (because PROBSYNTHGEN_CALLS is equal to 5).  if more than 5 
      calls are needed, increase this number as appropriate.  in general a 
      generous number of initializations are automatically provided, but if a 
      particular function is called many times over, it is important to check that 
      GenFX.h supports the number requested by the project. 
 
    * be sure to carefully check all macro inits.  there is little datasize checking in 
      calls to SynDevKit functions - therefore it is possible to crash SynDevKit 
      with improper input data. 
 
    * if indirect addressing is used (ie. I-regs), be sure to handle circular buffers 
      appropriately.  all SynDevKit functions assume that scratch I-registers can 
      access linear buffers without initializing their L-registers.  similarly, if circular 
      buffers are used, be sure to set the appropriate L-register as needed. 
 
    * check to make sure that system-constant registers are not modified. 
 
    * if the output is distorted, check if the total processing load is greater than the 
      available MIPS on the DSP.  while it is hard to count the exact number of 
      cycles used in any one project, if adding a track introduces a hard distortion 
      along with slowing the overall track down, chances are the DSP has run out 
      of MIPS.  if additional tracks are needed, look into substituting high MIPS 
      functions with those that consume fewer MIPS (for example WTGen2 rather  
      than WTGen or HPWTGen2). 
 
    if none of these appear to be true, send a description of the problem to me 
    at syndevkit@dspmusic.org and i’ll try to help as much as possible.



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 99 of 101 

 

Miscellaneous Notes on SynDevKit Operation 
 
these notes are so i do not forget how certain portions of SDK work and a 
reference on various system variables and buffers.  both questions and answers 
are included in here.  it is not designed as a true reference, but should 
provide some insight into how SynDevKit works for advanced users. 
 
control tracks: 
 
- always read and incremented whenever a new note is possibly triggered.  not 
  just when one triggers.  is this the best way to handle things?  this allows 
  for a direct mapping of control tracks if they are the same length as the 
  trigtrack, and for things to go out of phase if they are smaller than the 
  trigtrack.  the other option would be to only read/update ctrl track when a 
  new sound is generated, but i think that you couldn't have a consistent 
  event on a particular note if probabilistic seq was used.  need to investigate 
  further to see if additional CTRLTrack flexibility is really needed. 
 
- only one mem envelope can be applied to a single location.  this is true 
  because the mem env parameters include the base/current value and there is 
  no mechanism to sync them.  this could be added at the ModFuncs level if 
  needed (would require extra parameter in mem envs telling it where to pass 
  a newly calculated value). 
- actually, is this true?  it might be possible to analyze all mem env 
  functions to determine which ones write to the same address.  then there could 
  be a sync function called as a part of mem env that would pass the value to 
  the next apporpriate mem env.  again, not sure that this is really needed. 
  would allow for applying an LFO to a ramping value which may be neat, but  
  i won't implement this unless it is requested. 
 
GenFXIni call flow: 
 
* initialize all generators, fx, envelopes 
* initialize track trigger arrays 
* initialize all control tracks (new pointers and data) 
* initialize sequencer 
 
* call Seq2PostProc immediately after end of SEQ2 inits 
  - call CalcSeq2Tracks; 
    - determines total # tracks through comparing start of seq buffer to current 
      location of I2.  write to a_Seq+0 
  - call SetEnvNums; 
    - read env type, set env num based on how many times this envelop has been 
      seen in the Seq2 array.  uses a_EnvTypes to keep running total of each 
      env type 
  - call InitTrackTypeArray; 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 100 of 101 

    - keep track of each env type for every track. 
  - call InitTrigVolCTRLPtrs; 
    - init "assumed" pointers in Seq2.  ap_CTRLTrack (control track ptr), 
      a_CTRLTrack (base trig ptr and curr trig ptr), a_Voltrack (volume array 
      ptr), a_TrigTrack (trigger array) 
 
* set tics per measure - used in SongCTRL to determine call rate. 
 
* set AR to point to start of GenFXIni function, AX0 to point to end of GenFXIni 
  function, and call FillGenFXPtrInits 
  - register functions in a_GenFXPtrInits that are always called (all mem envs) 
  - read opcode from GenFXIni.  compare opcode to all opcodes registered in 
    SetPtrOpcodes.  if it's a match, call the function in the opcode table to 
    register function in GenFXPtrInits array to force re-init of pointer every 
    time a new sample is generated.  if not, go to next element in opcode array. 
    continue until all registered opcodes are scanned and compared. 
  - if a mem env is found, instead of registering the function in 
    a_GenFXPtrInits, calculate the number of calls to make to this function in 
    ModFuncs. 
 
* call GenFXIniPostProc 
  - call CalcNumPtrInits.  determines number of gen/fx functions in 
    a_GenFXPtrInits array, stores value at head of array. 
  - call InitEnvCalls.  analyze envelope types in Seq2 array and writes the 
    apprpriate opcode starting at ^Env in GenFX. 
 



8x-SynDevKit  11/24/2003 
syndevkit@dspmusic.org  Page 101 of 101 

Credits 
 
Thanks to my cohorts in the DSP Music Syndicate (Ben Recht, Brian Whitman, 
and Noah Vawter) for providing ideas and creating songs with SynDevKit. 
Also thanks to Analog Devices and MIT for providing DSP development 
tools and $$$.  Lastly, thanks to those who have supported me and been 
patient while I’ve worked on this project for far too long. 
 
Ethan Bordeaux 
etsi vs etsu 
 
syndevkit@dspmusic.org 
www.dspmusic.org 
www.dsperado.com/chiclet 
 
 


